REVIEWS

A comprehensive review of recent progress on enhancement-mode β-Ga2O3 FETs: Growth, devices and properties

Botong Li1, 2, Xiaodong Zhang1, 2, Li Zhang1, Yongjian Ma1, 2, Wenbo Tang1, 2, Tiwei Chen1, 2, Yu Hu1, 2, Xin Zhou2, Chunxu Bian2, Chunhong Zeng2, Tao Ju2, Zhongming Zeng1, 2 and Baoshun Zhang1, 2,

+ Author Affiliations

 Corresponding author: Baoshun Zhang, bszhang2006@sinano.ac.cn

PDF

Turn off MathJax

Abstract: Power electronic devices are of great importance in modern society. After decades of development, Si power devices have approached their material limits with only incremental improvements and large conversion losses. As the demand for electronic components with high efficiency dramatically increasing, new materials are needed for power device fabrication. Beta-phase gallium oxide, an ultra-wide bandgap semiconductor, has been considered as a promising candidate, and various β-Ga2O3 power devices with high breakdown voltages have been demonstrated. However, the realization of enhancement-mode (E-mode) β-Ga2O3 field-effect transistors (FETs) is still challenging, which is a critical problem for a myriad of power electronic applications. Recently, researchers have made some progress on E-mode β-Ga2O3 FETs via various methods, and several novel structures have been fabricated. This article gives a review of the material growth, devices and properties of these E-mode β-Ga2O3 FETs. The key challenges and future directions in E-mode β-Ga2O3 FETs are also discussed.

Key words: enhancement modeFETsβ-Ga2O3



[1]
Baliga B J. Fundamentals of power semiconductor devices. Cham: Springer International Publishing, 2019
[2]
Wong M H, Higashiwaki M. Vertical β-Ga2O3 power transistors: A review. IEEE Trans Electron Devices, 2020, 67, 3925 doi: 10.1109/TED.2020.3016609
[3]
She X, Huang A Q, Lucía Ó, et al. Review of silicon carbide power devices and their applications. IEEE Trans Ind Electron, 2017, 64, 8193 doi: 10.1109/TIE.2017.2652401
[4]
Sun R Z, Lai J X, Chen W J, et al. GaN power integration for high frequency and high efficiency power applications: A review. IEEE Access, 2020, 8, 15529 doi: 10.1109/ACCESS.2020.2967027
[5]
Wang C L, Zhang J C, Xu S R, et al. Progress in state-of-the-art technologies of Ga2O3 devices. J Phys D, 2021, 54, 243001 doi: 10.1088/1361-6463/abe158
[6]
Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 2012, 100, 013504 doi: 10.1063/1.3674287
[7]
Wagner G, Baldini M, Gogova D, et al. Homoepitaxial growth of β-Ga2O3 layers by metal-organic vapor phase epitaxy. Phys Status Solidi A, 2014, 211, 27 doi: 10.1002/pssa.201330092
[8]
Baldini M, Albrecht M, Fiedler A, et al. Si- and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates. ECS J Solid State Sci Technol, 2016, 6, Q3040 doi: 10.1149/2.0081702jss
[9]
Zhang Y W, Alema F, Mauze A, et al. MOCVD grown epitaxial β-Ga2O3 thin film with an electron mobility of 176 cm2/V s at room temperature. APL Mater, 2019, 7, 022506 doi: 10.1063/1.5058059
[10]
Oshima T, Arai N, Suzuki N, et al. Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy. Thin Solid Films, 2008, 516, 5768 doi: 10.1016/j.tsf.2007.10.045
[11]
Sasaki K, Higashiwaki M, Kuramata A, et al. Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy. J Cryst Growth, 2014, 392, 30 doi: 10.1016/j.jcrysgro.2014.02.002
[12]
Nomura K, Goto K, Togashi R, et al. Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy. J Cryst Growth, 2014, 405, 19 doi: 10.1016/j.jcrysgro.2014.06.051
[13]
Oshima Y, Vίllora E G, Shimamura K. Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0001) substrates by halide vapor phase epitaxy. J Cryst Growth, 2015, 410, 53 doi: 10.1016/j.jcrysgro.2014.10.038
[14]
Leach J H, Udwary K, Rumsey J, et al. Halide vapor phase epitaxial growth of β-Ga2O3 and α-Ga2O3 films. APL Mater, 2019, 7, 022504 doi: 10.1063/1.5055680
[15]
Ueda N, Hosono H, Waseda R, et al. Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals. Appl Phys Lett, 1997, 70, 3561 doi: 10.1063/1.119233
[16]
Sasaki K, Kuramata A, Masui T, et al. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl Phys Express, 2012, 5, 035502 doi: 10.1143/APEX.5.035502
[17]
Han S H, Mauze A, Ahmadi E, et al. n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy. Semicond Sci Technol, 2018, 33, 045001 doi: 10.1088/1361-6641/aaae56
[18]
Víllora E G, Shimamura K, Yoshikawa Y, et al. Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping. Appl Phys Lett, 2008, 92, 202120 doi: 10.1063/1.2919728
[19]
Gogova D, Wagner G, Baldini M, et al. Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE. J Cryst Growth, 2014, 401, 665 doi: 10.1016/j.jcrysgro.2013.11.056
[20]
Ahmadi E, Koksaldi O S, Kaun S W, et al. Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. Appl Phys Express, 2017, 10, 041102 doi: 10.7567/APEX.10.041102
[21]
Saleh M, Bhattacharyya A, Varley J B, et al. Electrical and optical properties of Zr doped β-Ga2O3 single crystals. Appl Phys Express, 2019, 12, 085502 doi: 10.7567/1882-0786/ab2b6c
[22]
Saleh M, Varley J B, Jesenovec J, et al. Degenerate doping in β-Ga2O3 single crystals through Hf-doping. Semicond Sci Technol, 2020, 35, 04LT01 doi: 10.1088/1361-6641/ab75a6
[23]
Wong M H, Sasaki K, Kuramata A, et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett, 2016, 37, 212 doi: 10.1109/LED.2015.2512279
[24]
Lv Y J, Zhou X Y, Long S B, et al. Source-field-plated β-Ga2O3 MOSFET with record power figure of merit of 50.4 MW/cm2. IEEE Electron Device Lett, 2019, 40, 83 doi: 10.1109/LED.2018.2881274
[25]
Sharma S, Zeng K, Saha S, et al. Field-plated lateral Ga2O3 MOSFETs with polymer passivation and 8.03 kV breakdown voltage. IEEE Electron Device Lett, 2020, 41, 836 doi: 10.1109/LED.2020.2991146
[26]
Kanechika M, Sugimoto M, Soejima N, et al. A vertical insulated gate AlGaN/GaN heterojunction field-effect transistor. Jpn J Appl Phys, 2007, 46, L503 doi: 10.1143/JJAP.46.L503
[27]
Shenoy J N, Cooper J A, Melloch M R. High-voltage double-implanted power MOSFET’s in 6H-SiC. IEEE Electron Device Lett, 1997, 18, 93 doi: 10.1109/55.556091
[28]
Kyrtsos A, Matsubara M, Bellotti E. On the feasibility of p-type Ga2O3. Appl Phys Lett, 2018, 112, 032108 doi: 10.1063/1.5009423
[29]
Chabak K D, McCandless J P, Moser N A, et al. Recessed-gate enhancement-mode β-Ga2O3 MOSFETs. IEEE Electron Device Lett, 2018, 39, 67 doi: 10.1109/LED.2017.2779867
[30]
Feng Z Q, Cai Y C, Li Z, et al. Design and fabrication of field-plated normally off β-Ga2O3 MOSFET with laminated-ferroelectric charge storage gate for high power application. Appl Phys Lett, 2020, 116, 243503 doi: 10.1063/5.0010561
[31]
Kamimura T, Nakata Y, Wong M H, et al. Normally-off Ga2O3 MOSFETs with unintentionally nitrogen-doped channel layer grown by plasma-assisted molecular beam epitaxy. IEEE Electron Device Lett, 2019, 40, 1064 doi: 10.1109/LED.2019.2919251
[32]
Zhou X Z, Liu Q, Hao W B, et al. Normally-off β-Ga2O3 power heterojunction field-effect-transistor realized by p-NiO and recessed-gate. 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2022, 101 doi: 10.1109/ISPSD49238.2022.9813678
[33]
Feng Z X, Anhar Uddin Bhuiyan A F M, Karim M R, et al. MOCVD homoepitaxy of Si-doped (010) β-Ga2O3 thin films with superior transport properties. Appl Phys Lett, 2019, 114, 250601 doi: 10.1063/1.5109678
[34]
Seryogin G, Alema F, Valente N, et al. MOCVD growth of high purity Ga2O3 epitaxial films using trimethylgallium precursor. Appl Phys Lett, 2020, 117, 262101 doi: 10.1063/5.0031484
[35]
Zhang T, Li Y F, Cheng Q, et al. Influence of O2 pulse on the β-Ga2O3 films deposited by pulsed MOCVD. Ceram Int, 2022, 48, 8268 doi: 10.1016/j.ceramint.2021.12.031
[36]
Hernandez A, Islam M M, Saddatkia P, et al. MOCVD growth and characterization of conductive homoepitaxial Si-doped Ga2O3. Results Phys, 2021, 25, 104167 doi: 10.1016/j.rinp.2021.104167
[37]
Alema F, Hertog B, Osinsky A, et al. Fast growth rate of epitaxial β-Ga2O3 by close coupled showerhead MOCVD. J Cryst Growth, 2017, 475, 77 doi: 10.1016/j.jcrysgro.2017.06.001
[38]
Bin Anooz S, Grüneberg R, Wouters C, et al. Step flow growth of β-Ga2O3 thin films on vicinal (100) β-Ga2O3 substrates grown by MOVPE. Appl Phys Lett, 2020, 116, 182106 doi: 10.1063/5.0005403
[39]
Schewski R, Baldini M, Irmscher K, et al. Evolution of planar defects during homoepitaxial growth of β-Ga2O3 layers on (100) substrates—a quantitative model. J Appl Phys, 2016, 120, 225308 doi: 10.1063/1.4971957
[40]
Chabak K D, Moser N, Green A J, et al. Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage. Appl Phys Lett, 2016, 109, 213501 doi: 10.1063/1.4967931
[41]
Hogan J E, Kaun S W, Ahmadi E, et al. Chlorine-based dry etching of β-Ga2O3. Semicond Sci Technol, 2016, 31, 065006 doi: 10.1088/0268-1242/31/6/065006
[42]
Dong H, Long S B, Sun H D, et al. Fast switching β-Ga2O3 power MOSFET with a trench-gate structure. IEEE Electron Device Lett, 2019, 40, 1385 doi: 10.1109/LED.2019.2926202
[43]
Green A J, Chabak K D, Baldini M, et al. β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett, 2017, 38, 790 doi: 10.1109/LED.2017.2694805
[44]
Do H B, Phan-Gia A V, Nguyen V Q, et al. Optimization of normally-off β-Ga2O3 MOSFET with high Ion and BFOM: A TCAD study. AIP Adv, 2022, 12, 065024 doi: 10.1063/5.0094418
[45]
Do H B, Luc Q H, Ha M T H, et al. Investigation of Mo/Ti/AlN/HfO2 high-k metal gate stack for low power consumption InGaAs NMOS device application. IEEE Electron Device Lett, 2017, 38, 552 doi: 10.1109/LED.2017.2688389
[46]
Wong M H, Nakata Y, Kuramata A, et al. Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain. Appl Phys Express, 2017, 10, 041101 doi: 10.7567/APEX.10.041101
[47]
Guo L L, Luan S Z, Zhang H P, et al. Analytical model and structure of the multilayer enhancement-mode β-Ga2O3 planar MOSFETs. IEEE Trans Electron Devices, 2022, 69, 682 doi: 10.1109/TED.2021.3137097
[48]
Zhou X Z, Liu Q, Xu G W, et al. Realizing high-performance β-Ga2O3 MOSFET by using variation of lateral doping: A TCAD study. IEEE Trans Electron Devices, 2021, 68, 1501 doi: 10.1109/TED.2021.3056326
[49]
Stengl R, Gosele U. Variation of lateral doping - A new concept to avoid high voltage breakdown of planar junctions. 1985 International Electron Devices Meeting, 2005, 154 doi: 10.1109/IEDM.1985.190917
[50]
Lv Y J, Zhou X Y, Long S B, et al. Enhancement-mode β-Ga2O3 metal-oxide-semiconductor field-effect transistor with high breakdown voltage over 3000 V realized by oxygen annealing. Phys Status Solidi RRL, 2020, 14, 1900586 doi: 10.1002/pssr.201900586
[51]
Ghosh S, Baral M, Kamparath R, et al. Investigations on band commutativity at all oxide p-type NiO/n-type β-Ga2O3 heterojunction using photoelectron spectroscopy. Appl Phys Lett, 2019, 115, 251603 doi: 10.1063/1.5126150
[52]
Lu X, Zhou X D, Jiang H X, et al. 1-kV sputtered p-NiO/n-Ga2O3 heterojunction diodes with an ultra-low leakage current below 1 μA/cm2. IEEE Electron Device Lett, 2020, 41, 449 doi: 10.1109/LED.2020.2967418
[53]
Gong H H, Chen X H, Xu Y, et al. A 1.86-kV double-layered NiO/β-Ga2O3 vertical p–n heterojunction diode. Appl Phys Lett, 2020, 117, 022104 doi: 10.1063/5.0010052
[54]
Wang C L, Gong H H, Lei W N, et al. Demonstration of the p-NiO x/n-Ga2O3 heterojunction gate FETs and diodes with BV2/Ron, sp figures of merit of 0.39 GW/cm2 and 1.38 GW/cm2. IEEE Electron Device Lett, 2021, 42, 485 doi: 10.1109/LED.2021.3062851
[55]
Lei W N, Dang K, Zhou H, et al. Proposal and simulation of Ga2O3 MOSFET with PN heterojunction structure for high-performance E-mode operation. IEEE Trans Electron Devices, 2022, 69, 3617 doi: 10.1109/TED.2022.3172919
[56]
Murakami H, Nomura K, Goto K, et al. Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl Phys Express, 2015, 8, 015503 doi: 10.7567/APEX.8.015503
[57]
Wong M H, Goto K, Murakami H, et al. Current aperture vertical β-Ga2O3 MOSFETs fabricated by N- and Si-ion implantation doping. IEEE Electron Device Lett, 2019, 40, 431 doi: 10.1109/LED.2018.2884542
[58]
Wong M H, Murakami H, Kumagai Y, et al. Enhancement-mode β-Ga2O3 current aperture vertical MOSFETs with N-ion-implanted blocker. IEEE Electron Device Lett, 2020, 41, 296 doi: 10.1109/LED.2019.2962657
[59]
Zeng K, Soman R, Bian Z L, et al. Vertical Ga2O3 MOSFET with magnesium diffused current blocking layer. IEEE Electron Device Lett, 2022, 43, 1527 doi: 10.1109/LED.2022.3196035
[60]
Zhou X Z, Ma Y J, Xu G W, et al. Enhancement-mode β-Ga2O3 U-shaped gate trench vertical MOSFET realized by oxygen annealing. Appl Phys Lett, 2022, 121, 223501 doi: 10.1063/5.0130292
[61]
Ma Y, Zhou X, Tang W, et al. 702.3 A∙ cm–2/10.4 mΩ∙cm2 vertical β-Ga2O3 U-shape trench gate MOSFET with N-ion implantation. IEEE Electron Device Lett, 2023, 44, 384 doi: 10.1109/LED.2023.3235777
[62]
Hu Z Y, Nomoto K, Li W S, et al. Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1 kV. IEEE Electron Device Lett, 2018, 39, 869 doi: 10.1109/LED.2018.2830184
[63]
Hu Z Y, Nomoto K, Li W S, et al. 1.6 kV vertical Ga2O3 FinFETs with source-connected field plates and normally-off operation. 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2019, 483 doi: 10.1109/ISPSD.2019.8757633
[64]
Li W, Nomoto K, Hu Z, et al. Single and multi-fin normally-off Ga2O3 vertical transistors with a breakdown voltage over 2.6 kV. 2019 IEEE International Electron Devices Meeting (IEDM), 2020, 12.4.1 doi: 10.1109/IEDM19573.2019.8993526
[65]
Zeng K, Vaidya A, Singisetti U. 1.85 kV breakdown voltage in lateral field-plated Ga2O3 MOSFETs. IEEE Electron Device Lett, 2018, 39, 1385 doi: 10.1109/LED.2018.2859049
[66]
Mun J K, Cho K, Chang W, et al. 2.32 kV breakdown voltage lateral β-Ga2O3 MOSFETs with source-connected field plate. ECS J Solid State Sci Technol, 2019, 8, Q3079 doi: 10.1149/2.0151907jss
[67]
Wang Y B, Gong H H, Jia X L, et al. Demonstration of β-Ga2O3 superjunction-equivalent MOSFETs. IEEE Trans Electron Devices, 2022, 69, 2203 doi: 10.1109/TED.2022.3152464
[68]
Deboy G, Marz N, Stengl J P, et al. A new generation of high voltage MOSFETs breaks the limit line of silicon. International Electron Devices Meeting, 1998, 683 doi: 10.1109/IEDM.1998.746448
[69]
Kim J, Kim K. A novel 4H-SiC super junction UMOSFET with heterojunction diode for enhanced reverse recovery characteristics. 2020 International Conference on Electronics, Information, and Communication (ICEIC), 2020, 1 doi: 10.1109/ICEIC49074.2020.9051221
[70]
Nakajima A, Sumida Y, Dhyani M H, et al. GaN-based super heterojunction field effect transistors using the polarization junction concept. IEEE Electron Device Lett, 2011, 32, 542 doi: 10.1109/LED.2011.2105242
[71]
Kim S H, Shoemaker D, Chatterjee B, et al. Thermally-aware layout design of β-Ga2O3 lateral MOSFETs. IEEE Trans Electron Devices, 2022, 69, 1251 doi: 10.1109/TED.2022.3143779
[72]
Kim S H, Spencer lundh J, Shoemaker D, et al. Device-level transient cooling of β-Ga2O3 MOSFETs. 2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm), 2022, 1 doi: 10.1109/iTherm54085.2022.9899595
Fig. 1.  (Color online) (a) The dependences between the breakdown field and bandgap. (b) Theoretical limits of the relation between on-resistances and breakdown voltage for major semiconductors and β-Ga2O3. © 2012 American Institute of Physics. Reprinted with permission from Ref. [6].

Fig. 2.  (Color online) (a) The schematic of the showerhead MOCVD reaction chamber. © 2021 Elsevier B.V. Reprinted with permission from Ref. [34]. (b) The schematic diagram showing the mechanism of step-flow growth and two-dimensional nucleation growth. © 2019 American Institute of Physics. Reprinted with permission from Ref. [37].

Fig. 3.  (Color online) (a) Temperature dependence of carrier mobility tested in low-temperature hall measurement. (b) SIMS depth distribution of impurities in MOCVD grown β-Ga2O3 epitaxial layer on (010) substrate. © 2019 American Institute of Physics. Reprinted with permission from Ref. [31].

Fig. 4.  (Color online) (a) Fabrication process and (b) the geometry structure false-colored SEM image of FinFET with an LSD = 4. (c) The transfer characteristics in the form of log(ID)–VG with the forward and reverse sweeps. (d) The breakdown characteristics of β-Ga2O3 FinFETs with LGD of 16 and 21 μm measured at VGS = 0 V. © 2016 Chabak et al. Reprinted with permission from Ref. [40].

Fig. 5.  (Color online) (a) The false-colored SEM view of a recessed gate device with the LSD = 3 µm device. The HR-TEM picture below shows the facet morphology of sidewall and bottom in the gate-recess contact and gate metal interfaces. (b) The output characteristics for an LSD = 8 µm device at the gate bias of 8 V. (c) Linear transfer characteristics at VDS = 15 V. © 2017 IEEE. Reprinted with permission from Ref. [29].

Fig. 6.  (Color online) (a) Schematic diagram of the enhancement-mode MOSFET. (b) Linear transfer characteristics (IDSVGS) of the fabricated trench gate MOSFET measured at VDS = 10 V. © 2019 IEEE. Reprinted with permission from Ref. [42].

Fig. 7.  (Color online) (a) Cross section view of the E-mode MOSFETs with the UID channel layer and Si+-implanted source (drain) contacts. (b) Linear transfer characteristics at VDS = 15 V. © 2017 The Japan Society of Applied Physics. Reprinted with permission from Ref. [47].

Fig. 8.  (Color online) Schematic diagram of lateral Ga2O3 MOSFET structures (a) without and (b) with UID buffer layer. (c) The novel triple layer design of lateral MOSFET structure. © 2021 IEEE. Reprinted with permission from Ref. [47].

Fig. 9.  (Color online) Cross section view of the FET with (a) UD layer and (b) VLD layer. The (c) linear and (d) semi-logarithmic scale of transfer characteristics extracted from the simulation. © 2021 IEEE. Reprinted with permission from Ref. [48].

Fig. 10.  (Color online) (a) Schematic diagram of the OA β-Ga2O3 MOSFET with Lgd = 17 μm. (b) Log-scale transfer characteristics of the device. (c) The breakdown characteristics of the OA Ga2O3 MOSFET without source field plate, with single SFP and with double SFP. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Reprinted with permission from Ref. [50].

Fig. 11.  (Color online) Cross-sectional view of the E-mode HJ-FET (a) without the Al2O3 layer and (b) with the Al2O3 layer. The linear-scale transfer characteristics for the E-mode HJ-FET (c) without the Al2O3 layer and (d) with the Al2O3 layer. © 2022 IEEE. Reprinted with permission from Ref. [55].

Fig. 12.  (Color online) (a) Cross-section view of the gate-recessed HJ-FET. (b) Log-scale IDSVGS curves of the gate-recessed HJ-FET at VDS of 0.1, 5, and 8 V. © 2022 IEEE. Reprinted with permission from Ref. [30].

Fig. 13.  (Color online) (a) Schematic diagram of L-FeG Ga2O3 MOSFET. (b) Linear-scale IDSVDS and (c) IDSVGS curves of the D- and E-mode L-FeG Ga2O3 MOSFET with an LSD = 11.4 μm © 2020 Feng et al. Reprinted with permission from Ref. [30].

Fig. 14.  (Color online) Cross-sectional view of the current aperture vertical Ga2O3. © 2018 IEEE. Reprinted with permission from Ref. [57].

Fig. 15.  (Color online) Schematics of (a) E-mode and (b) D-mode current aperture vertical Ga2O3 MOSFETs. © 2019 IEEE. Reprinted with permission from Ref. [58].

Fig. 16.  (Color online) Cross-section schematic of the fabricated VDBFET. © 2022 IEEE. Reprinted with permission from Ref. [59].

Fig. 17.  (Color online) (a) Cross sections view and (b) optical micrograph of a Ga2O3 UMOSFET with CBL realized by oxygen annealing. (c) Transfer and (d) output characteristics of Ga2O3 UMOSFET © 2022 Zhou et al. Reprinted with permission from Ref. [60].

Fig. 18.  (Color online) (a) Schematic view of Ga2O3 UMOSFET with CBL realized by N+ implantation. Output characteristics of (b) UMOS-LN and (c) UMOS-HN. Three terminal breakdown characteristics of (d) UMOS-LN and (e) UMOS-HN. © 2023 IEEE. Reprinted with permission from Ref. [61].

Fig. 19.  (Color online) (a) Cross sections view and (b) output characteristics of a Ga2O3 FinFET. © 2018 IEEE. Reprinted with permission from Ref. [62].

Fig. 20.  (Color online) Cross section view of (a) gate-connected Ga2O3 FP-MOSFET. © 2015 IEEE. (b) SFP-MOSFET © 2018 IEEE. (c) Composite gate-connected Ga2O3 FP-MOSFET © 2018 IEEE. (d) Ga2O3 composite field plate MOSFET © Mun et al. 2019. (e) Composite gate-connected Ga2O3 FP-MOSFET with polymer passivation. © 2020 IEEE.

Fig. 21.  (Color online) (a–e) Schematic of the fabricating steps for β-Ga2O3 SJ-equivalent MOSFETs. (f) The Photographs of SJ formed by parallel arranged p-NiO/n-Ga2O3 strips in the region between gate and drain. (g) 3-D schematic diagram of the β-Ga2O3 SJ-equivalent MOSFETs. © 2022 IEEE. Reprinted with permission from Ref. [67].

Fig. 22.  (Color online) (a) Schematic diagram of the β-Ga2O3 MOSFET. (b) CCD images of β-Ga2O3 MOSFETs with four different channel orientations. (c) Simulation and experimental results of Gate temperatures and IR images for MOSFETs with different orientations. (d) Simulated results of relation between MOSFET channel temperatures and channel orientation at VGS = 4 V. Two devices with different channel widths of 50 and 100 μm were used in this simulation. © 2022 IEEE. Reprinted with permission from Ref. [71].

Fig. 23.  (Color online) (a) Option 1: Cross section view of a lateral β-Ga2O3 MOSFETs. (b) Option 2: A simulated structure with the β-Ga2O3 substrate bonded by the diamond at the bottom. (c) Option 3: A simulated structure based on the option 2 in (b) optimized by depositing the polycrystalline diamond over the exposed part of β-Ga2O3 channel layer. © 2022 IEEE. Reprinted with permission from Ref. [72].

Table 1.   Comparison of the physical properties of Si, GaN, SiC, and β-Ga2O3.

Semiconductor materialSiGaN4H-SiCβ-Ga2O3
Eg (eV)1.13.43.34.7-4.9
μ (cm2/(V·s))140012001000300
Ebr (MV/cm)0.33.32.58
BFOM18703403444
λ (W/(cm·K))1.52.12.70.11
DownLoad: CSV
[1]
Baliga B J. Fundamentals of power semiconductor devices. Cham: Springer International Publishing, 2019
[2]
Wong M H, Higashiwaki M. Vertical β-Ga2O3 power transistors: A review. IEEE Trans Electron Devices, 2020, 67, 3925 doi: 10.1109/TED.2020.3016609
[3]
She X, Huang A Q, Lucía Ó, et al. Review of silicon carbide power devices and their applications. IEEE Trans Ind Electron, 2017, 64, 8193 doi: 10.1109/TIE.2017.2652401
[4]
Sun R Z, Lai J X, Chen W J, et al. GaN power integration for high frequency and high efficiency power applications: A review. IEEE Access, 2020, 8, 15529 doi: 10.1109/ACCESS.2020.2967027
[5]
Wang C L, Zhang J C, Xu S R, et al. Progress in state-of-the-art technologies of Ga2O3 devices. J Phys D, 2021, 54, 243001 doi: 10.1088/1361-6463/abe158
[6]
Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 2012, 100, 013504 doi: 10.1063/1.3674287
[7]
Wagner G, Baldini M, Gogova D, et al. Homoepitaxial growth of β-Ga2O3 layers by metal-organic vapor phase epitaxy. Phys Status Solidi A, 2014, 211, 27 doi: 10.1002/pssa.201330092
[8]
Baldini M, Albrecht M, Fiedler A, et al. Si- and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates. ECS J Solid State Sci Technol, 2016, 6, Q3040 doi: 10.1149/2.0081702jss
[9]
Zhang Y W, Alema F, Mauze A, et al. MOCVD grown epitaxial β-Ga2O3 thin film with an electron mobility of 176 cm2/V s at room temperature. APL Mater, 2019, 7, 022506 doi: 10.1063/1.5058059
[10]
Oshima T, Arai N, Suzuki N, et al. Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy. Thin Solid Films, 2008, 516, 5768 doi: 10.1016/j.tsf.2007.10.045
[11]
Sasaki K, Higashiwaki M, Kuramata A, et al. Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy. J Cryst Growth, 2014, 392, 30 doi: 10.1016/j.jcrysgro.2014.02.002
[12]
Nomura K, Goto K, Togashi R, et al. Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy. J Cryst Growth, 2014, 405, 19 doi: 10.1016/j.jcrysgro.2014.06.051
[13]
Oshima Y, Vίllora E G, Shimamura K. Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0001) substrates by halide vapor phase epitaxy. J Cryst Growth, 2015, 410, 53 doi: 10.1016/j.jcrysgro.2014.10.038
[14]
Leach J H, Udwary K, Rumsey J, et al. Halide vapor phase epitaxial growth of β-Ga2O3 and α-Ga2O3 films. APL Mater, 2019, 7, 022504 doi: 10.1063/1.5055680
[15]
Ueda N, Hosono H, Waseda R, et al. Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals. Appl Phys Lett, 1997, 70, 3561 doi: 10.1063/1.119233
[16]
Sasaki K, Kuramata A, Masui T, et al. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl Phys Express, 2012, 5, 035502 doi: 10.1143/APEX.5.035502
[17]
Han S H, Mauze A, Ahmadi E, et al. n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy. Semicond Sci Technol, 2018, 33, 045001 doi: 10.1088/1361-6641/aaae56
[18]
Víllora E G, Shimamura K, Yoshikawa Y, et al. Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping. Appl Phys Lett, 2008, 92, 202120 doi: 10.1063/1.2919728
[19]
Gogova D, Wagner G, Baldini M, et al. Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE. J Cryst Growth, 2014, 401, 665 doi: 10.1016/j.jcrysgro.2013.11.056
[20]
Ahmadi E, Koksaldi O S, Kaun S W, et al. Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. Appl Phys Express, 2017, 10, 041102 doi: 10.7567/APEX.10.041102
[21]
Saleh M, Bhattacharyya A, Varley J B, et al. Electrical and optical properties of Zr doped β-Ga2O3 single crystals. Appl Phys Express, 2019, 12, 085502 doi: 10.7567/1882-0786/ab2b6c
[22]
Saleh M, Varley J B, Jesenovec J, et al. Degenerate doping in β-Ga2O3 single crystals through Hf-doping. Semicond Sci Technol, 2020, 35, 04LT01 doi: 10.1088/1361-6641/ab75a6
[23]
Wong M H, Sasaki K, Kuramata A, et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett, 2016, 37, 212 doi: 10.1109/LED.2015.2512279
[24]
Lv Y J, Zhou X Y, Long S B, et al. Source-field-plated β-Ga2O3 MOSFET with record power figure of merit of 50.4 MW/cm2. IEEE Electron Device Lett, 2019, 40, 83 doi: 10.1109/LED.2018.2881274
[25]
Sharma S, Zeng K, Saha S, et al. Field-plated lateral Ga2O3 MOSFETs with polymer passivation and 8.03 kV breakdown voltage. IEEE Electron Device Lett, 2020, 41, 836 doi: 10.1109/LED.2020.2991146
[26]
Kanechika M, Sugimoto M, Soejima N, et al. A vertical insulated gate AlGaN/GaN heterojunction field-effect transistor. Jpn J Appl Phys, 2007, 46, L503 doi: 10.1143/JJAP.46.L503
[27]
Shenoy J N, Cooper J A, Melloch M R. High-voltage double-implanted power MOSFET’s in 6H-SiC. IEEE Electron Device Lett, 1997, 18, 93 doi: 10.1109/55.556091
[28]
Kyrtsos A, Matsubara M, Bellotti E. On the feasibility of p-type Ga2O3. Appl Phys Lett, 2018, 112, 032108 doi: 10.1063/1.5009423
[29]
Chabak K D, McCandless J P, Moser N A, et al. Recessed-gate enhancement-mode β-Ga2O3 MOSFETs. IEEE Electron Device Lett, 2018, 39, 67 doi: 10.1109/LED.2017.2779867
[30]
Feng Z Q, Cai Y C, Li Z, et al. Design and fabrication of field-plated normally off β-Ga2O3 MOSFET with laminated-ferroelectric charge storage gate for high power application. Appl Phys Lett, 2020, 116, 243503 doi: 10.1063/5.0010561
[31]
Kamimura T, Nakata Y, Wong M H, et al. Normally-off Ga2O3 MOSFETs with unintentionally nitrogen-doped channel layer grown by plasma-assisted molecular beam epitaxy. IEEE Electron Device Lett, 2019, 40, 1064 doi: 10.1109/LED.2019.2919251
[32]
Zhou X Z, Liu Q, Hao W B, et al. Normally-off β-Ga2O3 power heterojunction field-effect-transistor realized by p-NiO and recessed-gate. 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2022, 101 doi: 10.1109/ISPSD49238.2022.9813678
[33]
Feng Z X, Anhar Uddin Bhuiyan A F M, Karim M R, et al. MOCVD homoepitaxy of Si-doped (010) β-Ga2O3 thin films with superior transport properties. Appl Phys Lett, 2019, 114, 250601 doi: 10.1063/1.5109678
[34]
Seryogin G, Alema F, Valente N, et al. MOCVD growth of high purity Ga2O3 epitaxial films using trimethylgallium precursor. Appl Phys Lett, 2020, 117, 262101 doi: 10.1063/5.0031484
[35]
Zhang T, Li Y F, Cheng Q, et al. Influence of O2 pulse on the β-Ga2O3 films deposited by pulsed MOCVD. Ceram Int, 2022, 48, 8268 doi: 10.1016/j.ceramint.2021.12.031
[36]
Hernandez A, Islam M M, Saddatkia P, et al. MOCVD growth and characterization of conductive homoepitaxial Si-doped Ga2O3. Results Phys, 2021, 25, 104167 doi: 10.1016/j.rinp.2021.104167
[37]
Alema F, Hertog B, Osinsky A, et al. Fast growth rate of epitaxial β-Ga2O3 by close coupled showerhead MOCVD. J Cryst Growth, 2017, 475, 77 doi: 10.1016/j.jcrysgro.2017.06.001
[38]
Bin Anooz S, Grüneberg R, Wouters C, et al. Step flow growth of β-Ga2O3 thin films on vicinal (100) β-Ga2O3 substrates grown by MOVPE. Appl Phys Lett, 2020, 116, 182106 doi: 10.1063/5.0005403
[39]
Schewski R, Baldini M, Irmscher K, et al. Evolution of planar defects during homoepitaxial growth of β-Ga2O3 layers on (100) substrates—a quantitative model. J Appl Phys, 2016, 120, 225308 doi: 10.1063/1.4971957
[40]
Chabak K D, Moser N, Green A J, et al. Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage. Appl Phys Lett, 2016, 109, 213501 doi: 10.1063/1.4967931
[41]
Hogan J E, Kaun S W, Ahmadi E, et al. Chlorine-based dry etching of β-Ga2O3. Semicond Sci Technol, 2016, 31, 065006 doi: 10.1088/0268-1242/31/6/065006
[42]
Dong H, Long S B, Sun H D, et al. Fast switching β-Ga2O3 power MOSFET with a trench-gate structure. IEEE Electron Device Lett, 2019, 40, 1385 doi: 10.1109/LED.2019.2926202
[43]
Green A J, Chabak K D, Baldini M, et al. β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett, 2017, 38, 790 doi: 10.1109/LED.2017.2694805
[44]
Do H B, Phan-Gia A V, Nguyen V Q, et al. Optimization of normally-off β-Ga2O3 MOSFET with high Ion and BFOM: A TCAD study. AIP Adv, 2022, 12, 065024 doi: 10.1063/5.0094418
[45]
Do H B, Luc Q H, Ha M T H, et al. Investigation of Mo/Ti/AlN/HfO2 high-k metal gate stack for low power consumption InGaAs NMOS device application. IEEE Electron Device Lett, 2017, 38, 552 doi: 10.1109/LED.2017.2688389
[46]
Wong M H, Nakata Y, Kuramata A, et al. Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain. Appl Phys Express, 2017, 10, 041101 doi: 10.7567/APEX.10.041101
[47]
Guo L L, Luan S Z, Zhang H P, et al. Analytical model and structure of the multilayer enhancement-mode β-Ga2O3 planar MOSFETs. IEEE Trans Electron Devices, 2022, 69, 682 doi: 10.1109/TED.2021.3137097
[48]
Zhou X Z, Liu Q, Xu G W, et al. Realizing high-performance β-Ga2O3 MOSFET by using variation of lateral doping: A TCAD study. IEEE Trans Electron Devices, 2021, 68, 1501 doi: 10.1109/TED.2021.3056326
[49]
Stengl R, Gosele U. Variation of lateral doping - A new concept to avoid high voltage breakdown of planar junctions. 1985 International Electron Devices Meeting, 2005, 154 doi: 10.1109/IEDM.1985.190917
[50]
Lv Y J, Zhou X Y, Long S B, et al. Enhancement-mode β-Ga2O3 metal-oxide-semiconductor field-effect transistor with high breakdown voltage over 3000 V realized by oxygen annealing. Phys Status Solidi RRL, 2020, 14, 1900586 doi: 10.1002/pssr.201900586
[51]
Ghosh S, Baral M, Kamparath R, et al. Investigations on band commutativity at all oxide p-type NiO/n-type β-Ga2O3 heterojunction using photoelectron spectroscopy. Appl Phys Lett, 2019, 115, 251603 doi: 10.1063/1.5126150
[52]
Lu X, Zhou X D, Jiang H X, et al. 1-kV sputtered p-NiO/n-Ga2O3 heterojunction diodes with an ultra-low leakage current below 1 μA/cm2. IEEE Electron Device Lett, 2020, 41, 449 doi: 10.1109/LED.2020.2967418
[53]
Gong H H, Chen X H, Xu Y, et al. A 1.86-kV double-layered NiO/β-Ga2O3 vertical p–n heterojunction diode. Appl Phys Lett, 2020, 117, 022104 doi: 10.1063/5.0010052
[54]
Wang C L, Gong H H, Lei W N, et al. Demonstration of the p-NiO x/n-Ga2O3 heterojunction gate FETs and diodes with BV2/Ron, sp figures of merit of 0.39 GW/cm2 and 1.38 GW/cm2. IEEE Electron Device Lett, 2021, 42, 485 doi: 10.1109/LED.2021.3062851
[55]
Lei W N, Dang K, Zhou H, et al. Proposal and simulation of Ga2O3 MOSFET with PN heterojunction structure for high-performance E-mode operation. IEEE Trans Electron Devices, 2022, 69, 3617 doi: 10.1109/TED.2022.3172919
[56]
Murakami H, Nomura K, Goto K, et al. Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl Phys Express, 2015, 8, 015503 doi: 10.7567/APEX.8.015503
[57]
Wong M H, Goto K, Murakami H, et al. Current aperture vertical β-Ga2O3 MOSFETs fabricated by N- and Si-ion implantation doping. IEEE Electron Device Lett, 2019, 40, 431 doi: 10.1109/LED.2018.2884542
[58]
Wong M H, Murakami H, Kumagai Y, et al. Enhancement-mode β-Ga2O3 current aperture vertical MOSFETs with N-ion-implanted blocker. IEEE Electron Device Lett, 2020, 41, 296 doi: 10.1109/LED.2019.2962657
[59]
Zeng K, Soman R, Bian Z L, et al. Vertical Ga2O3 MOSFET with magnesium diffused current blocking layer. IEEE Electron Device Lett, 2022, 43, 1527 doi: 10.1109/LED.2022.3196035
[60]
Zhou X Z, Ma Y J, Xu G W, et al. Enhancement-mode β-Ga2O3 U-shaped gate trench vertical MOSFET realized by oxygen annealing. Appl Phys Lett, 2022, 121, 223501 doi: 10.1063/5.0130292
[61]
Ma Y, Zhou X, Tang W, et al. 702.3 A∙ cm–2/10.4 mΩ∙cm2 vertical β-Ga2O3 U-shape trench gate MOSFET with N-ion implantation. IEEE Electron Device Lett, 2023, 44, 384 doi: 10.1109/LED.2023.3235777
[62]
Hu Z Y, Nomoto K, Li W S, et al. Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1 kV. IEEE Electron Device Lett, 2018, 39, 869 doi: 10.1109/LED.2018.2830184
[63]
Hu Z Y, Nomoto K, Li W S, et al. 1.6 kV vertical Ga2O3 FinFETs with source-connected field plates and normally-off operation. 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2019, 483 doi: 10.1109/ISPSD.2019.8757633
[64]
Li W, Nomoto K, Hu Z, et al. Single and multi-fin normally-off Ga2O3 vertical transistors with a breakdown voltage over 2.6 kV. 2019 IEEE International Electron Devices Meeting (IEDM), 2020, 12.4.1 doi: 10.1109/IEDM19573.2019.8993526
[65]
Zeng K, Vaidya A, Singisetti U. 1.85 kV breakdown voltage in lateral field-plated Ga2O3 MOSFETs. IEEE Electron Device Lett, 2018, 39, 1385 doi: 10.1109/LED.2018.2859049
[66]
Mun J K, Cho K, Chang W, et al. 2.32 kV breakdown voltage lateral β-Ga2O3 MOSFETs with source-connected field plate. ECS J Solid State Sci Technol, 2019, 8, Q3079 doi: 10.1149/2.0151907jss
[67]
Wang Y B, Gong H H, Jia X L, et al. Demonstration of β-Ga2O3 superjunction-equivalent MOSFETs. IEEE Trans Electron Devices, 2022, 69, 2203 doi: 10.1109/TED.2022.3152464
[68]
Deboy G, Marz N, Stengl J P, et al. A new generation of high voltage MOSFETs breaks the limit line of silicon. International Electron Devices Meeting, 1998, 683 doi: 10.1109/IEDM.1998.746448
[69]
Kim J, Kim K. A novel 4H-SiC super junction UMOSFET with heterojunction diode for enhanced reverse recovery characteristics. 2020 International Conference on Electronics, Information, and Communication (ICEIC), 2020, 1 doi: 10.1109/ICEIC49074.2020.9051221
[70]
Nakajima A, Sumida Y, Dhyani M H, et al. GaN-based super heterojunction field effect transistors using the polarization junction concept. IEEE Electron Device Lett, 2011, 32, 542 doi: 10.1109/LED.2011.2105242
[71]
Kim S H, Shoemaker D, Chatterjee B, et al. Thermally-aware layout design of β-Ga2O3 lateral MOSFETs. IEEE Trans Electron Devices, 2022, 69, 1251 doi: 10.1109/TED.2022.3143779
[72]
Kim S H, Spencer lundh J, Shoemaker D, et al. Device-level transient cooling of β-Ga2O3 MOSFETs. 2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm), 2022, 1 doi: 10.1109/iTherm54085.2022.9899595
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1370 Times PDF downloads: 197 Times Cited by: 0 Times

    History

    Received: 30 December 2022 Revised: 08 February 2023 Online: Accepted Manuscript: 11 March 2023Uncorrected proof: 13 March 2023Corrected proof: 22 May 2023Published: 08 June 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Botong Li, Xiaodong Zhang, Li Zhang, Yongjian Ma, Wenbo Tang, Tiwei Chen, Yu Hu, Xin Zhou, Chunxu Bian, Chunhong Zeng, Tao Ju, Zhongming Zeng, Baoshun Zhang. A comprehensive review of recent progress on enhancement-mode β-Ga2O3 FETs: Growth, devices and properties[J]. Journal of Semiconductors, 2023, 44(6): 061801. doi: 10.1088/1674-4926/44/6/061801 B T Li, X D Zhang, L Zhang, Y J Ma, W B Tang, T W Chen, Y Hu, X Zhou, C X Bian, C H Zeng, T Ju, Z M Zeng, B S Zhang. A comprehensive review of recent progress on enhancement-mode β-Ga2O3 FETs: Growth, devices and properties[J]. J. Semicond, 2023, 44(6): 061801. doi: 10.1088/1674-4926/44/6/061801Export: BibTex EndNote
      Citation:
      Botong Li, Xiaodong Zhang, Li Zhang, Yongjian Ma, Wenbo Tang, Tiwei Chen, Yu Hu, Xin Zhou, Chunxu Bian, Chunhong Zeng, Tao Ju, Zhongming Zeng, Baoshun Zhang. A comprehensive review of recent progress on enhancement-mode β-Ga2O3 FETs: Growth, devices and properties[J]. Journal of Semiconductors, 2023, 44(6): 061801. doi: 10.1088/1674-4926/44/6/061801

      B T Li, X D Zhang, L Zhang, Y J Ma, W B Tang, T W Chen, Y Hu, X Zhou, C X Bian, C H Zeng, T Ju, Z M Zeng, B S Zhang. A comprehensive review of recent progress on enhancement-mode β-Ga2O3 FETs: Growth, devices and properties[J]. J. Semicond, 2023, 44(6): 061801. doi: 10.1088/1674-4926/44/6/061801
      Export: BibTex EndNote

      A comprehensive review of recent progress on enhancement-mode β-Ga2O3 FETs: Growth, devices and properties

      doi: 10.1088/1674-4926/44/6/061801
      More Information
      • Author Bio:

        Botong Li got his BS degree from Jilin University in 2021. Now he is a master student at Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, under the supervision of Prof. Baoshun Zhang. His research focuses on the epitaxial growth and device fabrication of Ga2O3

        Baoshun Zhang received his BS degree from Changchun University of Science and Technology in 1994 and PhD degree from the Institute of Semiconductors, Chinese Academy of Sciences in 2003. Then he joined in Hong Kong University of Science and Technology. Currently, he is a researcher at Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, and his research interests include semiconductor material growth and device technology research

      • Corresponding author: bszhang2006@sinano.ac.cn
      • Received Date: 2022-12-30
      • Revised Date: 2023-02-08
      • Available Online: 2023-03-11

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return