SHORT COMMUNICATION

Solution-processed CuIn(S,Se)2 solar cells on transparent electrode offering 9.4% efficiency

Xinge Liu1, §, Chengfeng Ma1, §, Hao Xin1, and Liming Ding2,

+ Author Affiliations

 Corresponding author: Hao Xin, iamhxin@njupt.edu.cn; Liming Ding, ding@nanoctr.cn

PDF

Turn off MathJax



[1]
Suresh S, Uhl A R. Present status of solution-processing routes for Cu(In,Ga)(S,Se)2 solar cell absorbers. Adv Energy Mater, 2021, 11(14), 2003743 doi: 10.1002/aenm.202003743
[2]
Nakamura M, Yamaguchi K, Kimoto Y, et al. Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. IEEE J Photovolt, 2019, 9(6), 1863 doi: 10.1109/JPHOTOV.2019.2937218
[3]
Ramanujam J, Singh U P. Copper indium gallium selenide based solar cells–a review. Energy Environ Sci, 2017, 10, 1306 doi: 10.1039/C7EE00826K
[4]
Repins I, Contreras M A, Egaas B, et al. 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog Photovolt Res Appl, 2008, 16, 235 doi: 10.1002/pip.822
[5]
Chirilă A, Reinhard P, Pianezzi F, et al. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nat Mater, 2013, 12, 1107 doi: 10.1038/nmat3789
[6]
Jiang J J, Giridharagopal R, Jedlicka E, et al. Highly efficient copper-rich chalcopyrite solar cells from DMF molecular solution. Nano Energy, 2020, 69, 104438 doi: 10.1016/j.nanoen.2019.104438
[7]
Ma C F, Xiang C X, Liu X G, et al. Over 12% efficient CuIn(S,Se)2 solar cell with the absorber fabricated from dimethylformamide solution by doctor-blading in ambient air. Sol RRL, 2022, 6(6), 2200150 doi: 10.1002/solr.202200150
[8]
Arnou P, van Hest M F A M, Cooper C S, et al. Hydrazine-free solution-deposited CuIn(S,Se)2 solar cells by spray deposition of metal chalcogenides. ACS Appl Mater Interfaces, 2016, 8(19), 11893 doi: 10.1021/acsami.6b01541
[9]
Lin X Z, Klenk R, Wang L, et al. 11.3% efficiency Cu(In,Ga)(S,Se)2 thin film solar cells via drop-on-demand inkjet printing. Energy Environ Sci, 2016, 9, 2037 doi: 10.1039/C6EE00587J
[10]
Moon S H, Park S J, Hwang Y J, et al. Printable, wide band-gap chalcopyrite thin films for power generating window applications. Sci Rep, 2014, 4, 4408 doi: 10.1038/srep04408
[11]
Ben Chu V, Park S J, Park G S, et al. Semi-transparent thin film solar cells by a solution process. Korean J Chem Eng, 2016, 33(3), 880 doi: 10.1007/s11814-015-0200-1
[12]
Gao Y, Yin G C, Li Y, et al. 8.0% efficient submicron CuIn(S,Se)2 solar cells on Sn: In2O3 back contact via a facile solution process. ACS Appl Energy Mater, 2022, 5(10), 12252 doi: 10.1021/acsaem.2c01764
[13]
Jiang J J, Yu S T, Gong Y C, et al. 10.3% efficient CuIn(S,Se)2 solar cells from DMF molecular solution with the absorber selenized under high argon pressure. Sol RRL, 2018, 2, 1800044 doi: 10.1002/solr.201800044
[14]
Zhou Y G, Xiang C X, Dai Q, et al. 11.4% efficiency kesterite solar cells on transparent electrode. Adv Energy Mater, 2023, 13, 2370079 doi: 10.1002/aenm.202370079
[15]
Yu S T, Li B Y, Jiang J J, et al. Solution-processed chalcopyrite solar cells: The grain growth mechanism and the effects of Cu/In mole ratio. Adv Energy Mater, 2022, 12, 2103644 doi: 10.1002/aenm.202103644
[16]
Wang Y Z, Lv S S, Li Z C. Review on incorporation of alkali elements and their effects in Cu(In,Ga)Se2 solar cells. J Mater Sci Technol, 2022, 96(10), 179 doi: 10.1016/j.jmst.2020.07.050
[17]
Witte W, Abou-Ras D, Albe K, et al. Gallium gradients in Cu(In,Ga)Se2 thin-film solar cells. Prog Photovolt Res Appl, 2015, 23(6), 717 doi: 10.1002/pip.2485
Fig. 1.  (Color online) (a) The structure for CISSe solar cells. The J-V curve (b) and the EQE spectrum (c) for the best CISSe solar cell on FTO. Inset: extraction of the bandgap (Eg) from the EQE spectrum. The top-view (d) and cross-sectional (e) SEM images for CISSe film on FTO. (f) The XRD patterns for CISSe film on FTO.

[1]
Suresh S, Uhl A R. Present status of solution-processing routes for Cu(In,Ga)(S,Se)2 solar cell absorbers. Adv Energy Mater, 2021, 11(14), 2003743 doi: 10.1002/aenm.202003743
[2]
Nakamura M, Yamaguchi K, Kimoto Y, et al. Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. IEEE J Photovolt, 2019, 9(6), 1863 doi: 10.1109/JPHOTOV.2019.2937218
[3]
Ramanujam J, Singh U P. Copper indium gallium selenide based solar cells–a review. Energy Environ Sci, 2017, 10, 1306 doi: 10.1039/C7EE00826K
[4]
Repins I, Contreras M A, Egaas B, et al. 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog Photovolt Res Appl, 2008, 16, 235 doi: 10.1002/pip.822
[5]
Chirilă A, Reinhard P, Pianezzi F, et al. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nat Mater, 2013, 12, 1107 doi: 10.1038/nmat3789
[6]
Jiang J J, Giridharagopal R, Jedlicka E, et al. Highly efficient copper-rich chalcopyrite solar cells from DMF molecular solution. Nano Energy, 2020, 69, 104438 doi: 10.1016/j.nanoen.2019.104438
[7]
Ma C F, Xiang C X, Liu X G, et al. Over 12% efficient CuIn(S,Se)2 solar cell with the absorber fabricated from dimethylformamide solution by doctor-blading in ambient air. Sol RRL, 2022, 6(6), 2200150 doi: 10.1002/solr.202200150
[8]
Arnou P, van Hest M F A M, Cooper C S, et al. Hydrazine-free solution-deposited CuIn(S,Se)2 solar cells by spray deposition of metal chalcogenides. ACS Appl Mater Interfaces, 2016, 8(19), 11893 doi: 10.1021/acsami.6b01541
[9]
Lin X Z, Klenk R, Wang L, et al. 11.3% efficiency Cu(In,Ga)(S,Se)2 thin film solar cells via drop-on-demand inkjet printing. Energy Environ Sci, 2016, 9, 2037 doi: 10.1039/C6EE00587J
[10]
Moon S H, Park S J, Hwang Y J, et al. Printable, wide band-gap chalcopyrite thin films for power generating window applications. Sci Rep, 2014, 4, 4408 doi: 10.1038/srep04408
[11]
Ben Chu V, Park S J, Park G S, et al. Semi-transparent thin film solar cells by a solution process. Korean J Chem Eng, 2016, 33(3), 880 doi: 10.1007/s11814-015-0200-1
[12]
Gao Y, Yin G C, Li Y, et al. 8.0% efficient submicron CuIn(S,Se)2 solar cells on Sn: In2O3 back contact via a facile solution process. ACS Appl Energy Mater, 2022, 5(10), 12252 doi: 10.1021/acsaem.2c01764
[13]
Jiang J J, Yu S T, Gong Y C, et al. 10.3% efficient CuIn(S,Se)2 solar cells from DMF molecular solution with the absorber selenized under high argon pressure. Sol RRL, 2018, 2, 1800044 doi: 10.1002/solr.201800044
[14]
Zhou Y G, Xiang C X, Dai Q, et al. 11.4% efficiency kesterite solar cells on transparent electrode. Adv Energy Mater, 2023, 13, 2370079 doi: 10.1002/aenm.202370079
[15]
Yu S T, Li B Y, Jiang J J, et al. Solution-processed chalcopyrite solar cells: The grain growth mechanism and the effects of Cu/In mole ratio. Adv Energy Mater, 2022, 12, 2103644 doi: 10.1002/aenm.202103644
[16]
Wang Y Z, Lv S S, Li Z C. Review on incorporation of alkali elements and their effects in Cu(In,Ga)Se2 solar cells. J Mater Sci Technol, 2022, 96(10), 179 doi: 10.1016/j.jmst.2020.07.050
[17]
Witte W, Abou-Ras D, Albe K, et al. Gallium gradients in Cu(In,Ga)Se2 thin-film solar cells. Prog Photovolt Res Appl, 2015, 23(6), 717 doi: 10.1002/pip.2485

23050025SI.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 517 Times PDF downloads: 55 Times Cited by: 0 Times

    History

    Received: 25 May 2023 Revised: Online: Accepted Manuscript: 29 May 2023Corrected proof: 31 May 2023Uncorrected proof: 15 August 2023Published: 10 August 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xinge Liu, Chengfeng Ma, Hao Xin, Liming Ding. Solution-processed CuIn(S,Se)2 solar cells on transparent electrode offering 9.4% efficiency[J]. Journal of Semiconductors, 2023, 44(8): 080501. doi: 10.1088/1674-4926/44/8/080501 X G Liu, C F Ma, H Xin, L M Ding. Solution-processed CuIn(S,Se)2 solar cells on transparent electrode offering 9.4% efficiency[J]. J. Semicond, 2023, 44(8): 080501. doi: 10.1088/1674-4926/44/8/080501Export: BibTex EndNote
      Citation:
      Xinge Liu, Chengfeng Ma, Hao Xin, Liming Ding. Solution-processed CuIn(S,Se)2 solar cells on transparent electrode offering 9.4% efficiency[J]. Journal of Semiconductors, 2023, 44(8): 080501. doi: 10.1088/1674-4926/44/8/080501

      X G Liu, C F Ma, H Xin, L M Ding. Solution-processed CuIn(S,Se)2 solar cells on transparent electrode offering 9.4% efficiency[J]. J. Semicond, 2023, 44(8): 080501. doi: 10.1088/1674-4926/44/8/080501
      Export: BibTex EndNote

      Solution-processed CuIn(S,Se)2 solar cells on transparent electrode offering 9.4% efficiency

      doi: 10.1088/1674-4926/44/8/080501
      More Information
      • Author Bio:

        Xinge Liu is a MS student supervised by Prof. Hao Xin at School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications. She received her BS degree in Chemistry from Shandong University of Technology. Her research focuses on chalcopyrite solar cells

        Chengfeng Ma is a PhD student in School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, under the supervision of Prof. Hao Xin. He received his MS degree in Chemical Engineering from Hefei University of Technology in 2019. His research focuses on chalcopyrite solar cells

        Hao Xin is a professor in School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications. She received her PhD from Peking University in 2003. She was a JST-CREST researcher at NIMS and a JSPS fellow at JAIST from 2003 to 2006. Then she worked in Department of Chemical Engineering at the University of Washington until 2012. Her current research focuses on solution-processed solar cells (CZTS, CIGS and perovskite)

        Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Ingans Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, and the Associate Editor for Journal of Semiconductors

      • Corresponding author: iamhxin@njupt.edu.cnding@nanoctr.cn
      • Received Date: 2023-05-25
        Available Online: 2023-05-29

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return