ARTICLES

Spin injection into heavily-doped n-GaN via Schottky barrier

Zhenhao Sun1, Ning Tang1, 2, , Shuaiyu Chen1, Fan Zhang3, Haoran Fan4, Shixiong Zhang1, Rongxin Wang3, Xi Lin4, Jianping Liu3, Weikun Ge1 and Bo Shen1, 2

+ Author Affiliations

 Corresponding author: Ning Tang, ntang@pku.edu.cn

PDF

Turn off MathJax

Abstract: Spin injection and detection in bulk GaN were investigated by performing magnetotransport measurements at low temperatures. A non-local four-terminal lateral spin valve device was fabricated with Co/GaN Schottky contacts. The spin injection efficiency of 21% was achieved at 1.7 K. It was confirmed that the thin Schottky barrier formed between the heavily n-doped GaN and Co was conducive to the direct spin tunneling, by reducing the spin scattering relaxation through the interface states.

Key words: GaNspin injectionSchottky barriermagnetoresistance



[1]
Datta S, Das B. Electronic analog of the electro-optic modulator. Appl Phys Lett, 1990, 56, 665 doi: 10.1063/1.102730
[2]
Schliemann J, Egues J C, Loss D. Nonballistic spin-field-effect transistor. Phys Rev Lett, 2003, 90, 146801 doi: 10.1103/PhysRevLett.90.146801
[3]
Thompson S E, Parthasarathy S. Moore’s law: The future of Si microelectronics. Mater Today, 2006, 9, 20 doi: 10.1016/S1369-7021(06)71539-5
[4]
Dhar S, Brandt O, Ramsteiner M, et al. Colossal magnetic moment of Gd in GaN. Phys Rev Lett, 2005, 94, 037205 doi: 10.1103/PhysRevLett.94.037205
[5]
Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287, 1019 doi: 10.1126/science.287.5455.1019
[6]
Yin C M, Shen B, Zhang Q, et al. Rashba and Dresselhaus spin-orbit coupling in GaN-based heterostructures probed by the circular photogalvanic effect under uniaxial strain. Appl Phys Lett, 2010, 97, 181904 doi: 10.1063/1.3511768
[7]
Zhang S X, Tang N, Zhang X Y, et al. Excitonic effects on electron spin orientation and relaxation in wurtzite GaN. Phys Rev B, 2021, 104, 125202 doi: 10.1103/PhysRevB.104.125202
[8]
Johnson M, Silsbee R H. Spin-injection experiment. Phys Rev B, 1988, 37, 5326 doi: 10.1103/PhysRevB.37.5326
[9]
Schmidt G, Ferrand D, Molenkamp L W, et al. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys Rev B, 2000, 62, R4790 doi: 10.1103/PhysRevB.62.R4790
[10]
Rashba E I. Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem. Phys Rev B, 2000, 62, R16267 doi: 10.1103/PhysRevB.62.R16267
[11]
Jaffrès H, Fert A. Spin injection from a ferromagnetic metal into a semiconductor. J Appl Phys, 2002, 91, 8111 doi: 10.1063/1.1451887
[12]
Bhattacharya A, Baten M Z, Bhattacharya P. Electrical spin injection and detection of spin precession in room temperature bulk GaN lateral spin valves. Appl Phys Lett, 2016, 108, 042406 doi: 10.1063/1.4940888
[13]
Kum H, Heo J, Jahangir S, et al. Room temperature single GaN nanowire spin valves with FeCo/MgO tunnel contacts. Appl Phys Lett, 2012, 100, 182407 doi: 10.1063/1.4711850
[14]
Song A K, Chen J J, Lan J S, et al. Modulating room temperature spin injection into GaN towards the high-efficiency spin-light emitting diodes. Appl Phys Express, 2020, 13, 043006 doi: 10.35848/1882-0786/ab810b
[15]
Huang L, Wu H, Liu P, et al. Room temperature spin injection into SiC via Schottky barrier. Appl Phys Lett, 2018, 113, 222402 doi: 10.1063/1.5052193
[16]
Hanbicki A T, Jonker B T, Itskos G, et al. Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor. Appl Phys Lett, 2002, 80, 1240 doi: 10.1063/1.1449530
[17]
Zube C, Malindretos J, Watschke L, et al. Spin injection in epitaxial MnGa(111)/GaN(0001) heterostructures. J Appl Phys, 2018, 123, 033906 doi: 10.1063/1.5000348
[18]
Jönsson-Åkerman B J, Escudero R, Leighton C, et al. Reliability of normal-state current–voltage characteristics as an indicator of tunnel-junction barrier quality. Appl Phys Lett, 2000, 77, 1870 doi: 10.1063/1.1310633
[19]
Liu X C, Tang N, Fang C, et al. Spin relaxation induced by interfacial effects in n-GaN/MgO/Co spin injectors. RSC Adv, 2020, 10, 12547 doi: 10.1039/D0RA00464B
[20]
Jiang L, Choi W S, Jeen H, et al. Tunneling electroresistance induced by interfacial phase transitions in ultrathin oxide heterostructures. Nano Lett, 2013, 13, 5837 doi: 10.1021/nl4025598
[21]
Wang Y H, Zhang Q, Zhou J L, et al. Fowler–Nordheim tunneling-assisted enhancement of tunneling electroresistance effect through a composite barrier. Appl Phys Lett, 2020, 116, 202901 doi: 10.1063/5.0001770
[22]
Jedema F J, Filip A T, van Wees B J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature, 2001, 410, 345 doi: 10.1038/35066533
[23]
Jedema F J, Heersche H B, Filip A T, et al. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature, 2002, 416, 713 doi: 10.1038/416713a
[24]
van’t Erve O M J, Hanbicki A T, Holub M, et al. Electrical injection and detection of spin-polarized carriers in silicon in a lateral transport geometry. Appl Phys Lett, 2007, 91, 212109 doi: 10.1063/1.2817747
[25]
Zhou Y, Han W, Chang L T, et al. Electrical spin injection and transport in germanium. Phys Rev B, 2011, 84, 125323 doi: 10.1103/PhysRevB.84.125323
[26]
Valenzuela S O, Monsma D J, Marcus C M, et al. Spin polarized tunneling at finite bias. Phys Rev Lett, 2005, 94, 196601 doi: 10.1103/PhysRevLett.94.196601
[27]
Tombros N, Jozsa C, Popinciuc M, et al. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature, 2007, 448, 571 doi: 10.1038/nature06037
[28]
van 't Erve O M J, Awo-Affouda C, Hanbicki A T, et al. Information processing with pure spin currents in silicon: Spin injection, extraction, manipulation, and detection. IEEE Trans Electron Devices, 2009, 56, 2343 doi: 10.1109/TED.2009.2027975
[29]
Lou X H, Adelmann C, Crooker S A, et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nat Phys, 2007, 3, 197 doi: 10.1038/nphys543
[30]
Jedema F J, Costache M V, Heersche H B, et al. Electrical detection of spin accumulation and spin precession at room temperature in metallic spin valves. Appl Phys Lett, 2002, 81, 5162 doi: 10.1063/1.1532753
[31]
Buß J H, Rudolph J, Natali F, et al. Temperature dependence of electron spin relaxation in bulk GaN. Phys Rev B, 2010, 81, 155216 doi: 10.1103/PhysRevB.81.155216
[32]
Zhang X Y, Tang N, Yang L Y, et al. Electrical spin injection into the 2D electron gas in AlN/GaN heterostructures with ultrathin AlN tunnel barrier. Adv Funct Mater, 2021, 31, 2009771 doi: 10.1002/adfm.202009771
Fig. 1.  (Color online) (a) Schematic illustration of the four-terminal non-local measurement scheme (not drawn to scale). (b) AFM image of the GaN channel between injection and detection electrodes. (c) Schematic diagram of Schottky barrier tunneling at various doping densities. A lower doping density of GaN channel (red conduction band case) has a thicker barrier which causes spin polarized electrons being trapped by interface states.

Fig. 2.  (Color online) (a) The I–V characteristics of the injection circuit of the sample at various temperatures. The inset shows the differential conductance as a function of the bias voltage. (b) The zero-bias conductance as a function of temperature. The inset shows the ln(I/V2)–1/V curves for various temperatures.

Fig. 3.  (Color online) (a) Magnetoresistance as a function of in-plane magnetic field under a constant injection current of Iinject = 40 μA at 1.7 K. (b) The injection current-dependent non-local voltage at 1.7 K. The non-local voltage peaks are always restricted in the range of $ \pm $(250–600)$ \mathrm{O}\mathrm{e} $ as surrounded by four corresponding dotted lines. (c) The magnetoresistance difference extracted by non-local measurements at various injection currents. (d) The temperature dependent $ \mathrm{\Delta }R $ under 40 μA injection current.

[1]
Datta S, Das B. Electronic analog of the electro-optic modulator. Appl Phys Lett, 1990, 56, 665 doi: 10.1063/1.102730
[2]
Schliemann J, Egues J C, Loss D. Nonballistic spin-field-effect transistor. Phys Rev Lett, 2003, 90, 146801 doi: 10.1103/PhysRevLett.90.146801
[3]
Thompson S E, Parthasarathy S. Moore’s law: The future of Si microelectronics. Mater Today, 2006, 9, 20 doi: 10.1016/S1369-7021(06)71539-5
[4]
Dhar S, Brandt O, Ramsteiner M, et al. Colossal magnetic moment of Gd in GaN. Phys Rev Lett, 2005, 94, 037205 doi: 10.1103/PhysRevLett.94.037205
[5]
Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287, 1019 doi: 10.1126/science.287.5455.1019
[6]
Yin C M, Shen B, Zhang Q, et al. Rashba and Dresselhaus spin-orbit coupling in GaN-based heterostructures probed by the circular photogalvanic effect under uniaxial strain. Appl Phys Lett, 2010, 97, 181904 doi: 10.1063/1.3511768
[7]
Zhang S X, Tang N, Zhang X Y, et al. Excitonic effects on electron spin orientation and relaxation in wurtzite GaN. Phys Rev B, 2021, 104, 125202 doi: 10.1103/PhysRevB.104.125202
[8]
Johnson M, Silsbee R H. Spin-injection experiment. Phys Rev B, 1988, 37, 5326 doi: 10.1103/PhysRevB.37.5326
[9]
Schmidt G, Ferrand D, Molenkamp L W, et al. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys Rev B, 2000, 62, R4790 doi: 10.1103/PhysRevB.62.R4790
[10]
Rashba E I. Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem. Phys Rev B, 2000, 62, R16267 doi: 10.1103/PhysRevB.62.R16267
[11]
Jaffrès H, Fert A. Spin injection from a ferromagnetic metal into a semiconductor. J Appl Phys, 2002, 91, 8111 doi: 10.1063/1.1451887
[12]
Bhattacharya A, Baten M Z, Bhattacharya P. Electrical spin injection and detection of spin precession in room temperature bulk GaN lateral spin valves. Appl Phys Lett, 2016, 108, 042406 doi: 10.1063/1.4940888
[13]
Kum H, Heo J, Jahangir S, et al. Room temperature single GaN nanowire spin valves with FeCo/MgO tunnel contacts. Appl Phys Lett, 2012, 100, 182407 doi: 10.1063/1.4711850
[14]
Song A K, Chen J J, Lan J S, et al. Modulating room temperature spin injection into GaN towards the high-efficiency spin-light emitting diodes. Appl Phys Express, 2020, 13, 043006 doi: 10.35848/1882-0786/ab810b
[15]
Huang L, Wu H, Liu P, et al. Room temperature spin injection into SiC via Schottky barrier. Appl Phys Lett, 2018, 113, 222402 doi: 10.1063/1.5052193
[16]
Hanbicki A T, Jonker B T, Itskos G, et al. Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor. Appl Phys Lett, 2002, 80, 1240 doi: 10.1063/1.1449530
[17]
Zube C, Malindretos J, Watschke L, et al. Spin injection in epitaxial MnGa(111)/GaN(0001) heterostructures. J Appl Phys, 2018, 123, 033906 doi: 10.1063/1.5000348
[18]
Jönsson-Åkerman B J, Escudero R, Leighton C, et al. Reliability of normal-state current–voltage characteristics as an indicator of tunnel-junction barrier quality. Appl Phys Lett, 2000, 77, 1870 doi: 10.1063/1.1310633
[19]
Liu X C, Tang N, Fang C, et al. Spin relaxation induced by interfacial effects in n-GaN/MgO/Co spin injectors. RSC Adv, 2020, 10, 12547 doi: 10.1039/D0RA00464B
[20]
Jiang L, Choi W S, Jeen H, et al. Tunneling electroresistance induced by interfacial phase transitions in ultrathin oxide heterostructures. Nano Lett, 2013, 13, 5837 doi: 10.1021/nl4025598
[21]
Wang Y H, Zhang Q, Zhou J L, et al. Fowler–Nordheim tunneling-assisted enhancement of tunneling electroresistance effect through a composite barrier. Appl Phys Lett, 2020, 116, 202901 doi: 10.1063/5.0001770
[22]
Jedema F J, Filip A T, van Wees B J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature, 2001, 410, 345 doi: 10.1038/35066533
[23]
Jedema F J, Heersche H B, Filip A T, et al. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature, 2002, 416, 713 doi: 10.1038/416713a
[24]
van’t Erve O M J, Hanbicki A T, Holub M, et al. Electrical injection and detection of spin-polarized carriers in silicon in a lateral transport geometry. Appl Phys Lett, 2007, 91, 212109 doi: 10.1063/1.2817747
[25]
Zhou Y, Han W, Chang L T, et al. Electrical spin injection and transport in germanium. Phys Rev B, 2011, 84, 125323 doi: 10.1103/PhysRevB.84.125323
[26]
Valenzuela S O, Monsma D J, Marcus C M, et al. Spin polarized tunneling at finite bias. Phys Rev Lett, 2005, 94, 196601 doi: 10.1103/PhysRevLett.94.196601
[27]
Tombros N, Jozsa C, Popinciuc M, et al. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature, 2007, 448, 571 doi: 10.1038/nature06037
[28]
van 't Erve O M J, Awo-Affouda C, Hanbicki A T, et al. Information processing with pure spin currents in silicon: Spin injection, extraction, manipulation, and detection. IEEE Trans Electron Devices, 2009, 56, 2343 doi: 10.1109/TED.2009.2027975
[29]
Lou X H, Adelmann C, Crooker S A, et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nat Phys, 2007, 3, 197 doi: 10.1038/nphys543
[30]
Jedema F J, Costache M V, Heersche H B, et al. Electrical detection of spin accumulation and spin precession at room temperature in metallic spin valves. Appl Phys Lett, 2002, 81, 5162 doi: 10.1063/1.1532753
[31]
Buß J H, Rudolph J, Natali F, et al. Temperature dependence of electron spin relaxation in bulk GaN. Phys Rev B, 2010, 81, 155216 doi: 10.1103/PhysRevB.81.155216
[32]
Zhang X Y, Tang N, Yang L Y, et al. Electrical spin injection into the 2D electron gas in AlN/GaN heterostructures with ultrathin AlN tunnel barrier. Adv Funct Mater, 2021, 31, 2009771 doi: 10.1002/adfm.202009771
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 745 Times PDF downloads: 64 Times Cited by: 0 Times

    History

    Received: 07 January 2023 Revised: 28 February 2023 Online: Accepted Manuscript: 23 March 2023Uncorrected proof: 27 March 2023Corrected proof: 13 July 2023Published: 10 August 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhenhao Sun, Ning Tang, Shuaiyu Chen, Fan Zhang, Haoran Fan, Shixiong Zhang, Rongxin Wang, Xi Lin, Jianping Liu, Weikun Ge, Bo Shen. Spin injection into heavily-doped n-GaN via Schottky barrier[J]. Journal of Semiconductors, 2023, 44(8): 082501. doi: 10.1088/1674-4926/44/8/082501 Z H Sun, N Tang, S Y Chen, F Zhang, H R Fan, S X Zhang, R X Wang, X Lin, J P Liu, W K Ge, B Shen. Spin injection into heavily-doped n-GaN via Schottky barrier[J]. J. Semicond, 2023, 44(8): 082501. doi: 10.1088/1674-4926/44/8/082501Export: BibTex EndNote
      Citation:
      Zhenhao Sun, Ning Tang, Shuaiyu Chen, Fan Zhang, Haoran Fan, Shixiong Zhang, Rongxin Wang, Xi Lin, Jianping Liu, Weikun Ge, Bo Shen. Spin injection into heavily-doped n-GaN via Schottky barrier[J]. Journal of Semiconductors, 2023, 44(8): 082501. doi: 10.1088/1674-4926/44/8/082501

      Z H Sun, N Tang, S Y Chen, F Zhang, H R Fan, S X Zhang, R X Wang, X Lin, J P Liu, W K Ge, B Shen. Spin injection into heavily-doped n-GaN via Schottky barrier[J]. J. Semicond, 2023, 44(8): 082501. doi: 10.1088/1674-4926/44/8/082501
      Export: BibTex EndNote

      Spin injection into heavily-doped n-GaN via Schottky barrier

      doi: 10.1088/1674-4926/44/8/082501
      More Information
      • Author Bio:

        Zhenhao Sun got his BS from Nanjing University in 2019. Now he is a Ph.D. student at Peking University. His research focuses on spintronic devices of GaN-based semiconductors

        Ning Tang is a professor at School of Physics, Peking University. He received a Ph.D. degree in 2007 from School of Physics, Peking University. His current research mainly focuses on wide band gap semiconductor spintronics

      • Corresponding author: ntang@pku.edu.cn
      • Received Date: 2023-01-07
      • Revised Date: 2023-02-28
      • Available Online: 2023-03-23

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return