SHORT COMMUNICATION

Effect of drying methods on perovskite films and solar cells

Ling Liu1, Chuantian Zuo1, 2, , Guang-Xing Liang3, Hua Dong4, Jingjing Chang5 and Liming Ding1,

+ Author Affiliations

 Corresponding author: Chuantian Zuo, zuocht@nanoctr.cn; Liming Ding, ding@nanoctr.cn

PDF

Turn off MathJax



[1]
Zhao Y, Ma F, Qu Z H, et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377, 531 doi: 10.1126/science.abp8873
[2]
Chen X, Guo B, Zhang Z Y, et al. Binary hole transport layer enables stable perovskite solar cells with PCE exceeding 24%. DeCarbon, 2023, 1, 100004 doi: 10.1016/j.decarb.2023.100004
[3]
Liu W G, Raza H, Hu X D, et al. Key bottlenecks and distinct contradictions in fast commercialization of perovskite solar cells. Mater Futures, 2023, 2, 012103 doi: 10.1088/2752-5724/acba35
[4]
Tang G Q, Yan F. Flexible perovskite solar cells: Materials and devices. J Semicond, 2021, 42, 101606 doi: 10.1088/1674-4926/42/10/101606
[5]
Zhang L X, Pan X Y, Liu L, et al. Star perovskite materials. J Semicond, 2022, 43, 030203 doi: 10.1088/1674-4926/43/3/030203
[6]
Yang J, Hu J F, Zhang W H, et al. The opportunities and challenges of ionic liquids in perovskite solar cells. J Energy Chem, 2023, 77, 157 doi: 10.1016/j.jechem.2022.10.048
[7]
Zhou W, Pan T, Ning Z J. Strategies for enhancing the stability of metal halide perovskite towards robust solar cells. Sci China Mater, 2022, 65, 3190 doi: 10.1007/s40843-022-2277-9
[8]
Shao J Y, Li D M, Shi J J, et al. Recent progress in perovskite solar cells: Material science. Sci China Chem, 2023, 66, 10 doi: 10.1007/s11426-022-1445-2
[9]
Ma Y Z, Zhao Q. A strategic review on processing routes towards scalable fabrication of perovskite solar cells. J Energy Chem, 2022, 64, 538 doi: 10.1016/j.jechem.2021.05.019
[10]
Huang F, Li M J, Siffalovic P, et al. From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy & Environ Sci, 2019, 12, 518 doi: 10.1039/C8EE03025A
[11]
Yao H H, Shi S H, Li Z Z, et al. Strategies from small-area to scalable fabrication for perovskite solar cells. J Energy Chem, 2021, 57, 567 doi: 10.1016/j.jechem.2020.08.033
[12]
Jiang Z Y, Wang B K, Zhang W J, et al. Solvent engineering towards scalable fabrication of high-quality perovskite films for efficient solar modules. J Energy Chem, 2023, 80, 689 doi: 10.1016/j.jechem.2023.02.017
[13]
Castro-Hermosa S, Wouk L, Bicalho I S, et al. Efficient fully blade-coated perovskite solar cells in air with nanometer-thick bathocuproine buffer layer. Nano Res, 2021, 14, 1034 doi: 10.1007/s12274-020-3147-4
[14]
Gu Z K, Wang Y, Wang S H, et al. Controllable printing of large-scale compact perovskite films for flexible photodetectors. Nano Res, 2022, 15, 1547 doi: 10.1007/s12274-021-3700-9
[15]
Li H, Liu M Z, Li M C, et al. Applications of vacuum vapor deposition for perovskite solar cells: A progress review. iEnergy, 2022, 1, 434 doi: 10.23919/IEN.2022.0053
[16]
Chang X M, Fan Y Y, Zhao K, et al. Perovskite solar cells toward eco-friendly printing. Research, 2021, 2021, 9671892 doi: 10.34133/2021/9671892
[17]
Zhu Y Q, Hu M, Xu M, et al. Bilayer metal halide perovskite for efficient and stable solar cells and modules. Mater Futures, 2022, 1, 042102 doi: 10.1088/2752-5724/ac9248
[18]
Gao C, Wang H, Wang P, et al. Defect passivation with potassium trifluoroborate for efficient spray-coated perovskite solar cells in air. J Semicond, 2022, 43, 092201 doi: 10.1088/1674-4926/43/9/092201
[19]
Chen B B, Wang P Y, Ren N Y, et al. Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells. J Semicond, 2022, 43, 052201 doi: 10.1088/1674-4926/43/5/052201
[20]
Zuo C T, Scully A D, Vak D, et al. Self-assembled 2D perovskite layers for efficient printable solar cells. Adv Energy Mater, 2019, 9, 1803258 doi: 10.1002/aenm.201803258
[21]
Zuo C T, Scully A D, Gao M. Drop-casting method to screen Ruddlesden–Popper perovskite formulations for use in solar cells. ACS Appl Mater Interfaces, 2021, 13, 56217 doi: Drop-castingmethodtoscreenRuddlesden–Popperperovskiteformulationsforuseinsolarcells
[22]
Zuo C T, Ding L M. Drop-casting to make efficient perovskite solar cells under high humidity. Angew Chem Int Ed, 2021, 60, 11242 doi: 10.1002/anie.202101868
[23]
Zhang L X, Zuo C T, Ding L M. Efficient MAPbI3 solar cells made via drop-coating at room temperature. J Semicond, 2021, 42, 072201 doi: 10.1088/1674-4926/42/7/072201
[24]
Xiao H R, Zuo C T, Zhang L X, et al. Efficient inorganic perovskite solar cells made by drop-coating in ambient air. Nano Energy, 2023, 106, 108061 doi: 10.1016/j.nanoen.2022.108061
[25]
Xiao H R, Zuo C T, Yan K Y, et al. Highly efficient and air-stable inorganic perovskite solar cells enabled by polylactic acid modification. Adv Energy Mater, 2023, 13, 2300738 doi: 10.1002/aenm.202300738
[26]
Xiao H R, Zuo C T, Liu F Y, et al. Drop-coating produces efficient CsPbI2Br solar cells. J Semicond, 2021, 42, 050502 doi: 10.1088/1674-4926/42/5/050502
[27]
Liu L, Xiao H R, Jin K, et al. 4-Terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Letters, 2022, 15, 23 doi: 10.1007/s40820-022-00995-2
[28]
Zuo C T, Tan L G, Dong H, et al. Natural drying yields efficient perovskite solar cells. DeCarbon, 2023, 2, 100020 doi: 10.1016/j.decarb.2023.100020
[29]
Zuo C T, Zhang L X, Pan X Y, et al. Perovskite films with gradient bandgap for self-powered multiband photodetectors and spectrometers. Nano Res, 2023, 16, 10256 doi: 10.1007/s12274-023-5714-y
[30]
Liu L, Zuo C T, Ding L M. Self-spreading produces highly efficient perovskite solar cells. Nano Energy, 2021, 90, 106509 doi: 10.1016/j.nanoen.2021.106509
[31]
Zhang H, Park N G. Progress and issues in p-i-n type perovskite solar cells. DeCarbon, 2023, 100025 doi: 10.1016/j.decarb.2023.100025
[32]
Li C, Sun H X, Gan S, et al. Perovskite single crystals: Physical properties and optoelectronic applications. Mater Futures, 2023, 2, 042101 doi: 10.1088/2752-5724/ace8aa
[33]
Zhang L X, Li H, Zhang K, et al. Major strategies for improving the performance of perovskite solar cells. iEnergy, 2023, 2, 172 doi: 10.23919/IEN.2023.0026
[34]
Tao L, Qiu J, Sun B, et al. Stability of mixed-halide wide bandgap perovskite solar cells: Strategies and progress. J Energy Chem, 2021, 61, 395 doi: 10.1016/j.jechem.2021.03.038
[35]
Tian W J, Song P Q, Zhao Y P, et al. Monolithic bilayered In2O3 as an efficient interfacial material for high-performance perovskite solar cells. Interdiscip Mater, 2022, 1, 526 doi: 10.1002/idm2.12047
Fig. 1.  (Color online) The preparation process for perovskite films and the different drying methods in the second step.

Fig. 2.  (Color online) SEM images for perovskite films made by natural drying (a), vacuum drying (b), blow drying 1 (c), and blow drying 2 (d). (e) Distribution of grain size for the perovskite films made by different drying methods.

Fig. 3.  (Color online) UV−Vis absorption spectra (a), PL spectra (solid line: on glass substrate; dash line: on glass/SnO2 substrate) (b), normalized PL spectra (on glass substrate) (c), and XRD patterns (d) for the perovskite films made by using different drying methods. (e) SEM image (top view) for PbI2 film made by self-spreading. (f) Scheme for the reaction between PbI2 and FAI:MABr:MACl in the second step. (g) Scheme for the perovskite film with large grains and a small amount of unreacted PbI2. (h) Scheme for the perovskite film with small grains and a large amount of unreacted PbI2.

Fig. 4.  (Color online) (a) Structure for perovskite solar cells. (b) J−V curves for the cells made by using different drying methods. (c) Distribution of PCE for the cells made by using different drying methods. (d) EQE spectra for the cells.

Table 1.   Performance data for solar cells made by using different drying methods.

Drying methods Voc (V) Jsc (mA/cm2) FF (%) PCE (%)
Natural drying 1.19 22.30 79.51 21.17 (20.49) a
Vacuum drying 1.18 23.22 78.15 21.34 (20.85)
Blow drying 1 1.17 22.37 75.26 19.64 (19.11)
Blow drying 2 1.17 22.87 79.41 21.18 (20.48)
a The PCEs in the brackets are average PCE for 10 devices.
DownLoad: CSV
[1]
Zhao Y, Ma F, Qu Z H, et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377, 531 doi: 10.1126/science.abp8873
[2]
Chen X, Guo B, Zhang Z Y, et al. Binary hole transport layer enables stable perovskite solar cells with PCE exceeding 24%. DeCarbon, 2023, 1, 100004 doi: 10.1016/j.decarb.2023.100004
[3]
Liu W G, Raza H, Hu X D, et al. Key bottlenecks and distinct contradictions in fast commercialization of perovskite solar cells. Mater Futures, 2023, 2, 012103 doi: 10.1088/2752-5724/acba35
[4]
Tang G Q, Yan F. Flexible perovskite solar cells: Materials and devices. J Semicond, 2021, 42, 101606 doi: 10.1088/1674-4926/42/10/101606
[5]
Zhang L X, Pan X Y, Liu L, et al. Star perovskite materials. J Semicond, 2022, 43, 030203 doi: 10.1088/1674-4926/43/3/030203
[6]
Yang J, Hu J F, Zhang W H, et al. The opportunities and challenges of ionic liquids in perovskite solar cells. J Energy Chem, 2023, 77, 157 doi: 10.1016/j.jechem.2022.10.048
[7]
Zhou W, Pan T, Ning Z J. Strategies for enhancing the stability of metal halide perovskite towards robust solar cells. Sci China Mater, 2022, 65, 3190 doi: 10.1007/s40843-022-2277-9
[8]
Shao J Y, Li D M, Shi J J, et al. Recent progress in perovskite solar cells: Material science. Sci China Chem, 2023, 66, 10 doi: 10.1007/s11426-022-1445-2
[9]
Ma Y Z, Zhao Q. A strategic review on processing routes towards scalable fabrication of perovskite solar cells. J Energy Chem, 2022, 64, 538 doi: 10.1016/j.jechem.2021.05.019
[10]
Huang F, Li M J, Siffalovic P, et al. From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy & Environ Sci, 2019, 12, 518 doi: 10.1039/C8EE03025A
[11]
Yao H H, Shi S H, Li Z Z, et al. Strategies from small-area to scalable fabrication for perovskite solar cells. J Energy Chem, 2021, 57, 567 doi: 10.1016/j.jechem.2020.08.033
[12]
Jiang Z Y, Wang B K, Zhang W J, et al. Solvent engineering towards scalable fabrication of high-quality perovskite films for efficient solar modules. J Energy Chem, 2023, 80, 689 doi: 10.1016/j.jechem.2023.02.017
[13]
Castro-Hermosa S, Wouk L, Bicalho I S, et al. Efficient fully blade-coated perovskite solar cells in air with nanometer-thick bathocuproine buffer layer. Nano Res, 2021, 14, 1034 doi: 10.1007/s12274-020-3147-4
[14]
Gu Z K, Wang Y, Wang S H, et al. Controllable printing of large-scale compact perovskite films for flexible photodetectors. Nano Res, 2022, 15, 1547 doi: 10.1007/s12274-021-3700-9
[15]
Li H, Liu M Z, Li M C, et al. Applications of vacuum vapor deposition for perovskite solar cells: A progress review. iEnergy, 2022, 1, 434 doi: 10.23919/IEN.2022.0053
[16]
Chang X M, Fan Y Y, Zhao K, et al. Perovskite solar cells toward eco-friendly printing. Research, 2021, 2021, 9671892 doi: 10.34133/2021/9671892
[17]
Zhu Y Q, Hu M, Xu M, et al. Bilayer metal halide perovskite for efficient and stable solar cells and modules. Mater Futures, 2022, 1, 042102 doi: 10.1088/2752-5724/ac9248
[18]
Gao C, Wang H, Wang P, et al. Defect passivation with potassium trifluoroborate for efficient spray-coated perovskite solar cells in air. J Semicond, 2022, 43, 092201 doi: 10.1088/1674-4926/43/9/092201
[19]
Chen B B, Wang P Y, Ren N Y, et al. Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells. J Semicond, 2022, 43, 052201 doi: 10.1088/1674-4926/43/5/052201
[20]
Zuo C T, Scully A D, Vak D, et al. Self-assembled 2D perovskite layers for efficient printable solar cells. Adv Energy Mater, 2019, 9, 1803258 doi: 10.1002/aenm.201803258
[21]
Zuo C T, Scully A D, Gao M. Drop-casting method to screen Ruddlesden–Popper perovskite formulations for use in solar cells. ACS Appl Mater Interfaces, 2021, 13, 56217 doi: Drop-castingmethodtoscreenRuddlesden–Popperperovskiteformulationsforuseinsolarcells
[22]
Zuo C T, Ding L M. Drop-casting to make efficient perovskite solar cells under high humidity. Angew Chem Int Ed, 2021, 60, 11242 doi: 10.1002/anie.202101868
[23]
Zhang L X, Zuo C T, Ding L M. Efficient MAPbI3 solar cells made via drop-coating at room temperature. J Semicond, 2021, 42, 072201 doi: 10.1088/1674-4926/42/7/072201
[24]
Xiao H R, Zuo C T, Zhang L X, et al. Efficient inorganic perovskite solar cells made by drop-coating in ambient air. Nano Energy, 2023, 106, 108061 doi: 10.1016/j.nanoen.2022.108061
[25]
Xiao H R, Zuo C T, Yan K Y, et al. Highly efficient and air-stable inorganic perovskite solar cells enabled by polylactic acid modification. Adv Energy Mater, 2023, 13, 2300738 doi: 10.1002/aenm.202300738
[26]
Xiao H R, Zuo C T, Liu F Y, et al. Drop-coating produces efficient CsPbI2Br solar cells. J Semicond, 2021, 42, 050502 doi: 10.1088/1674-4926/42/5/050502
[27]
Liu L, Xiao H R, Jin K, et al. 4-Terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Letters, 2022, 15, 23 doi: 10.1007/s40820-022-00995-2
[28]
Zuo C T, Tan L G, Dong H, et al. Natural drying yields efficient perovskite solar cells. DeCarbon, 2023, 2, 100020 doi: 10.1016/j.decarb.2023.100020
[29]
Zuo C T, Zhang L X, Pan X Y, et al. Perovskite films with gradient bandgap for self-powered multiband photodetectors and spectrometers. Nano Res, 2023, 16, 10256 doi: 10.1007/s12274-023-5714-y
[30]
Liu L, Zuo C T, Ding L M. Self-spreading produces highly efficient perovskite solar cells. Nano Energy, 2021, 90, 106509 doi: 10.1016/j.nanoen.2021.106509
[31]
Zhang H, Park N G. Progress and issues in p-i-n type perovskite solar cells. DeCarbon, 2023, 100025 doi: 10.1016/j.decarb.2023.100025
[32]
Li C, Sun H X, Gan S, et al. Perovskite single crystals: Physical properties and optoelectronic applications. Mater Futures, 2023, 2, 042101 doi: 10.1088/2752-5724/ace8aa
[33]
Zhang L X, Li H, Zhang K, et al. Major strategies for improving the performance of perovskite solar cells. iEnergy, 2023, 2, 172 doi: 10.23919/IEN.2023.0026
[34]
Tao L, Qiu J, Sun B, et al. Stability of mixed-halide wide bandgap perovskite solar cells: Strategies and progress. J Energy Chem, 2021, 61, 395 doi: 10.1016/j.jechem.2021.03.038
[35]
Tian W J, Song P Q, Zhao Y P, et al. Monolithic bilayered In2O3 as an efficient interfacial material for high-performance perovskite solar cells. Interdiscip Mater, 2022, 1, 526 doi: 10.1002/idm2.12047
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 579 Times PDF downloads: 67 Times Cited by: 0 Times

    History

    Received: 10 October 2023 Revised: 07 November 2023 Online: Accepted Manuscript: 14 November 2023Uncorrected proof: 15 November 2023Published: 10 January 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ling Liu, Chuantian Zuo, Guang-Xing Liang, Hua Dong, Jingjing Chang, Liming Ding. Effect of drying methods on perovskite films and solar cells[J]. Journal of Semiconductors, 2024, 45(1): 010501. doi: 10.1088/1674-4926/45/1/010501 L Liu, C T Zuo, G X Liang, H Dong, J J Chang, L M Ding. Effect of drying methods on perovskite films and solar cells[J]. J. Semicond, 2024, 45(1): 010501. doi: 10.1088/1674-4926/45/1/010501Export: BibTex EndNote
      Citation:
      Ling Liu, Chuantian Zuo, Guang-Xing Liang, Hua Dong, Jingjing Chang, Liming Ding. Effect of drying methods on perovskite films and solar cells[J]. Journal of Semiconductors, 2024, 45(1): 010501. doi: 10.1088/1674-4926/45/1/010501

      L Liu, C T Zuo, G X Liang, H Dong, J J Chang, L M Ding. Effect of drying methods on perovskite films and solar cells[J]. J. Semicond, 2024, 45(1): 010501. doi: 10.1088/1674-4926/45/1/010501
      Export: BibTex EndNote

      Effect of drying methods on perovskite films and solar cells

      doi: 10.1088/1674-4926/45/1/010501
      More Information
      • Author Bio:

        Ling Liu Ling Liu got her BS from Sichuan Agricultural University in 2017. Then she joined in Liming Ding Group at National Center for Nanoscience and Technology as a PhD student. Her work focused on organic solar cells, perovskite solar cells and tandem solar cells

        Chuantian Zuo Chuantian Zuo received his PhD in 2018 from National Center for Nanoscience and Technology (CAS). Then he did postdoctoral research in CSIRO, Australia. Currently, he is an associate professor in National Center for Nanoscience and Technology. His research focuses on innovative fabrication techniques for perovskite solar cells

        Liming Ding Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, and the Associate Editors for Journal of Semiconductors and DeCarbon

      • Corresponding author: zuocht@nanoctr.cnding@nanoctr.cn
      • Received Date: 2023-10-10
      • Revised Date: 2023-11-07
      • Available Online: 2023-11-14

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return