REVIEWS

GaN based ultraviolet laser diodes

Jing Yang1, Degang Zhao1, 2, , Zongshun Liu1, Yujie Huang1, Baibin Wang1, Xiaowei Wang1, Yuheng Zhang1, Zhenzhuo Zhang1, Feng Liang1, Lihong Duan1, Hai Wang1 and Yongsheng Shi1

+ Author Affiliations

 Corresponding author: Degang Zhao, dgzhao@red.semi.ac.cn

PDF

Turn off MathJax

Abstract: In the past few years, many groups have focused on the research and development of GaN-based ultraviolet laser diodes (UV LDs). Great progresses have been achieved even though many challenges exist. In this article, we analyze the challenges of developing GaN-based ultraviolet laser diodes, and the approaches to improve the performance of ultraviolet laser diode are reviewed. With these techniques, room temperature (RT) pulsed oscillation of AlGaN UVA (ultraviolet A) LD has been realized, with a lasing wavelength of 357.9 nm. Combining with the suppression of thermal effect, the high output power of 3.8 W UV LD with a lasing wavelength of 386.5 nm was also fabricated.



[1]
Nagata K, Takeda K, Nonaka K, et al. Reduction in threshold current density of 355 nm UV laser diodes. Phys Status Solidi C, 2011, 8, 1564 doi: 10.1002/pssc.201001119
[2]
Iida K, Kawashima T, Miyazaki A, et al. Laser diode of 350.9 nm wavelength grown on sapphire substrate by MOVPE. J Cryst Growth, 2004, 272, 270 doi: 10.1016/j.jcrysgro.2004.08.052
[3]
Yamashita Y, Kuwabara M, Torii K, et al. A 340-nm-band ultraviolet laser diode composed of GaN well layers. Opt Express, 2013, 21, 3133 doi: 10.1364/OE.21.003133
[4]
Aoki Y, Kuwabara M, Yamashita Y, et al. A 350-nm-band GaN/AlGaN multiple-quantum-well laser diode on bulk GaN. Appl Phys Lett, 2015, 107, 151103 doi: 10.1063/1.4933257
[5]
Nagahama S I, Yanamoto T, Sano M, et al. Study of GaN-based laser diodes in near ultraviolet region. Jpn J Appl Phys, 2002, 41, 5 doi: 10.1143/JJAP.41.5
[6]
Masui S, Matsuyama Y, Yanamoto T, et al. 365 nm ultraviolet laser diodes composed of quaternary AlInGaN alloy. Jpn J Appl Phys, 2003, 42, L1318 doi: 10.1143/JJAP.42.L1318
[7]
Zhang Z Y, Kushimoto M, Sakai T, et al. A 271.8 nm deep-ultraviolet laser diode for room temperature operation. Appl Phys Express, 2019, 12, 124003 doi: 10.7567/1882-0786/ab50e0
[8]
Niass M I, Sharif M N, Wang Y F, et al. A contrivance of 277 nm DUV LD with B0.313Ga0.687N/B0.40Ga0.60N QWs and Al x Ga1– x N heterojunction grown on AlN substrate. J Semicond, 2019, 40, 122802 doi: 10.1088/1674-4926/40/12/122802
[9]
Nakamura S, Senoh M, Nagahama S I, et al. InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Appl Phys Lett, 1998, 72, 211 doi: 10.1063/1.120688
[10]
Yoshida H, Yamashita Y, Kuwabara M, et al. A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode. Nature Photon, 2008, 2, 551 doi: 10.1038/nphoton.2008.135
[11]
Yoshida H, Yamashita Y, Kuwabara M, et al. Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode. Appl Phys Lett, 2008, 93, 241106 doi: 10.1063/1.3050539
[12]
Taketomi H, Aoki Y, Takagi Y, et al. Over 1 W record-peak-power operation of a 338 nm AlGaN multiple-quantum-well laser diode on a GaN substrate. Jpn J Appl Phys, 2016, 55, 05FJ05 doi: 10.7567/JJAP.55.05FJ05
[13]
Zhang Z Y, Kushimoto M, Yoshikawa A, et al. Key temperature-dependent characteristics of AlGaN-based UV-C laser diode and demonstration of room-temperature continuous-wave lasing. Appl Phys Lett, 2022, 121, 222103 doi: 10.1063/5.0124480
[14]
Zhao D G, Yang J, Liu Z S, et al. Fabrication of room temperature continuous-wave operation GaN-based ultraviolet laser diodes. J Semicond, 2017, 38, 051001 doi: 10.1088/1674-4926/38/5/051001
[15]
Yang J, Wang B B, Zhao D G, et al. Realization of 366 nm GaN/AlGaN single quantum well ultraviolet laser diodes with a reduction of carrier loss in the waveguide layers. J Appl Phys, 2021, 130, 173105 doi: 10.1063/5.0069567
[16]
Yang J, Zhao D G, Liu Z S, et al. A 357.9 nm GaN/AlGaN multiple quantum well ultraviolet laser diode. J Semicond, 2022, 43, 010501 doi: 10.1088/1674-4926/43/1/010501
[17]
Yang J, Zhao D G, Liu Z S, et al. Room temperature continuous-wave operated 2.0-W GaN-based ultraviolet laser diodes. Opt Lett, 2022, 47, 1666 doi: 10.1364/OL.454340
[18]
Yang J, Zhao D G, Liu Z S, et al. Regulating absorption loss and carrier injection efficiency in ultraviolet laser diodes by changing waveguide layer structure. Opt Laser Technol, 2022, 156, 108574 doi: 10.1016/j.optlastec.2022.108574
[19]
Amano H, Collazo R, De Santi C, et al. The 2020 UV emitter roadmap. J Phys D: Appl Phys, 2020, 53, 503001 doi: 10.1088/1361-6463/aba64c
[20]
Guenther B D, Steel D G. Encyclopedia of modern optics. Academic Press, 2018
[21]
Guo Q A, Kirste R, Mita S, et al. Design of AlGaN-based quantum structures for low threshold UVC lasers. J Appl Phys, 2019, 126, 223101 doi: 10.1063/1.5125256
[22]
Cho Y H, Gainer G H, Fischer A J, et al. “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells. Appl Phys Lett, 1998, 73, 1370 doi: 10.1063/1.122164
[23]
Yang J, Zhao D G, Jiang D S, et al. Optical and structural characteristics of high indium content InGaN/GaN multi-quantum wells with varying GaN cap layer thickness. J Appl Phys, 2015, 117, 055709 doi: 10.1063/1.4907670
[24]
Yoshida H, Takagi Y, Kuwabara M, et al. Entirely crack-free ultraviolet GaN/AlGaN laser diodes grown on 2-in. sapphire substrate. Jpn J Appl Phys, 2007, 46, 5782 doi: 10.1143/JJAP.46.5782
[25]
Wang B B, Yang J, Zhao D G, et al. The mechanisms of AlGaN device buffer layer growth and crystalline quality improvement: Restraint of gallium residues, mismatch stress relief, and control of aluminum atom migration length. Crystals, 2022, 12, 1131 doi: 10.3390/cryst12081131
[26]
Ji Q B, Li L, Zhang W, et al. Dislocation reduction and stress relaxation of GaN and InGaN multiple quantum wells with improved performance via serpentine channel patterned mask. ACS Appl Mater Interfaces, 2016, 8, 21480 doi: 10.1021/acsami.6b07044
[27]
Tsuzuki H, Mori F, Takeda K, et al. High-performance UV emitter grown on high-crystalline-quality AlGaN underlying layer. Phys Status Solidi (a), 2009, 206, 1199 doi: 10.1002/pssa.200880784
[28]
Crawford M H, Allerman A A, Armstrong A M, et al. Laser diodes with 353 nm wavelength enabled by reduced-dislocation-density AlGaN templates. Appl Phys Express, 2015, 8, 112702 doi: 10.7567/APEX.8.112702
[29]
Zhao D G, Jiang D S, Yang H, et al. Effect of lightly Si doping on the minority carrier diffusion length in n-type GaN films. Appl Phys Lett, 2006, 88, 252101 doi: 10.1063/1.2213932
[30]
Warnick K H, Puzyrev Y, Roy T, et al. Room-temperature diffusive phenomena in semiconductors: The case of AlGaN. Phys Rev B, 2011, 84, 214109 doi: 10.1103/PhysRevB.84.214109
[31]
Puzyrev Y S, Roy T, Beck M, et al. Dehydrogenation of defects and hot-electron degradation in GaN high-electron-mobility transistors. J Appl Phys, 2011, 109, 034501 doi: 10.1063/1.3524185
[32]
Huang Y J, Yang J, Zhao D G, et al. Role of vacancy defects in reducing the responsivity of AlGaN Schottky barrier ultraviolet detectors. Nanomaterials, 2022, 12, 3148 doi: 10.3390/nano12183148
[33]
Yang J, Zhang Y H, Zhao D G, et al. Realization low resistivity of high AlN mole fraction Si-doped AlGaN by suppressing the formation native vacancies. J Cryst Growth, 2021, 570, 126245 doi: 10.1016/j.jcrysgro.2021.126245
[34]
Zhang L Q, Jiang D S, Zhu J J, et al. Confinement factor and absorption loss of AlInGaN based laser diodes emitting from ultraviolet to green. J Appl Phys, 2009, 105, 023104 doi: 10.1063/1.3068182
[35]
Chen P, Feng M X, Jiang D S, et al. Improvement of characteristics of InGaN-based laser diodes with undoped InGaN upper waveguide layer. J Appl Phys, 2012, 112, 113105 doi: 10.1063/1.4768287
[36]
Yoshida H, Kuwabara M, Yamashita Y, et al. The Current status of ultraviolet laser diodes. Phys Status Solidi A, 2011, 208, 1586 doi: 10.1002/pssa.201000870
[37]
Marona L, Wisniewski P, Prystawko P, et al. Degradation mechanisms in InGaN laser diodes grown on bulk GaN crystals. Appl Phys Lett, 2006, 88, 201111 doi: 10.1063/1.2204845
[38]
Takeya M, Mizuno T, Sasaki T, et al. Degradation in AlGaInN lasers. Phys Stat Sol (c), 2003, 7, 2292 doi: 10.1002/pssc.200303324
[39]
Meneghini M, Carraro S, Meneghesso G, et al. Degradation of InGaN/GaN laser diodes investigated by micro-cathodoluminescence and micro-photoluminescence. Appl Phys Lett, 2013, 103, 233506 doi: 10.1063/1.4834697
[40]
Marona L, Wiśniewski P, Leszczyński M, et al. Why InGaN laser-diode degradation is accompanied by the improvement of its thermal stability. Integrated Optoelectronic Devices 2008, 2008, 68940R doi: 10.1117/12.762220
[41]
Mura G, Vanzi M, Hempel M, et al. Analysis of GaN based high-power diode lasers after singular degradation events. Physica Rapid Research Ltrs, 2017, 11, 1700132 doi: 10.1002/pssr.201700132
[42]
Tomm J W, Kernke R, L Löffler, et al. Defect evolution during catastrophic optical damage in 450-nm emitting InGaN/GaN diode lasers. SPIE 10553, Novel in-Plane Semiconductor Lasers XVII, 2018, 1055308 doi: 10.1117/12.2286322
[43]
Strauss U, Somers A, Heine U, et al. GaInN laser diodes from 440 to 530nm: a performance study on single-mode and multi-mode R&D designs. Proc SPIE 10123, Novel in-Plane Semiconductor Lasers XVI, 2017, 101230A doi: 10.1117/12.2254504
[44]
Wang X W, Liu Z S, Zhao D G, et al. New mechanisms of cavity facet degradation for GaN-based laser diodes. J Appl Phys, 2021, 129, 223106 doi: 10.1063/5.0051126
Fig. 1.  (Color online) Schematic diagram of the sample structures for two different growth methods: ELOG method (a) and the method grown on AlN strain modulation layer (b).

Fig. 2.  (Color online) Schematic diagram of in-situ reflectance curve in initial stage of AlGaN growth[25].

Fig. 3.  (Color online) The in-situ reflectance curves of AlGaN samples with different growth rate (GR). The GR controlled by TMGa flow rate, it is 34.7 sccm for the sample with small GR, 69.4 sccm for the sample with large GR.

Fig. 4.  (Color online) Dependence of the low momentum parameter S (a) and high momentum parameter W (b) on positron incident energy in these five samples. (c) Relationship between S and W of the five samples. (d) S parameter and peak responsivity of AlGaN detector versus AlN mole fraction of AlGaN.

Fig. 5.  (Color online) Previously reported resistivity value as a function of the AlN mole fraction of n-AlGaN layers. Our results are shown as red solid star symbols[33].

Fig. 6.  (Color online) PL peak energy each as a function of temperature for samples A (3 nm) and B (6 nm).

Fig. 7.  (Color online) The schematic diagram of LD structure.

Fig. 8.  (Color online) Spatial distribution of electron concentration around WG layers and active region under different injection current values from 20 to 300 mA for samples LD1 with 50 nm-thick WG layer (a), LD2 with 150 nm-thick WG layer (b). (c) Shows lasing wavelength of 357.9 nm in the electroluminescence spectrum of another UV LD under RT pulsed operation condition at an injection current of 1550 mA. (d) Shows the RT output power of the 357.9 nm LD as a function of injected current. The inset shows a photo of the laser with the blue far field pattern of the laser beam image formed on the white paper screen.

Fig. 9.  (Color online) Pulsed light output power versus injection current of LD A (a) and LD B (b) as a function of temperature. Temperature dependences of CW PIV characteristics of LD A (c) and LD B (d). The insets of (a) and (b) show ln(Ith) as a function of temperature for LD A (a) and LD B (b).

Fig. 10.  (Color online) PI and IV curves of LD A (empty symbols) and LD B (full symbols) under CW operation for LD A and LD B.

Fig. 11.  (Color online) IV curves (square points) and PI curves (circle points) of LD B’ (red) and LD B’’(black) under CW operation.

Fig. 12.  (Color online) Optical output power curve (red) and the corresponding voltage curve (blue) as a function of the aging time for the unsealed LD under a CW operation with an injection current of 800 mA.

Fig. 13.  (Color online) Optical micrographs of the top view of LD front cavity facet for virgin (a) and aged (b) LD, respectively, where the waveguide ridge region can be seen by two green parallel lines. The deposits at front facet are marked by a red ellipsoidal circle in (b). SEM images (c) of the front cavity facet for aged LD. A biforked deposit is clearly observed in the side view.

Fig. 14.  (Color online) (a) SEM images of the front cavity facet for aged flip chip packaged LD with lasing wavelength of 384 nm, where the QW region is located between two parallel dashed blue lines; (c) is the enlarged image of (a) under ridge region; (b) and (d) are the EDS images for the regions in (a) marked with red ellipsoidal circle and thick red crosshair, respectively.

[1]
Nagata K, Takeda K, Nonaka K, et al. Reduction in threshold current density of 355 nm UV laser diodes. Phys Status Solidi C, 2011, 8, 1564 doi: 10.1002/pssc.201001119
[2]
Iida K, Kawashima T, Miyazaki A, et al. Laser diode of 350.9 nm wavelength grown on sapphire substrate by MOVPE. J Cryst Growth, 2004, 272, 270 doi: 10.1016/j.jcrysgro.2004.08.052
[3]
Yamashita Y, Kuwabara M, Torii K, et al. A 340-nm-band ultraviolet laser diode composed of GaN well layers. Opt Express, 2013, 21, 3133 doi: 10.1364/OE.21.003133
[4]
Aoki Y, Kuwabara M, Yamashita Y, et al. A 350-nm-band GaN/AlGaN multiple-quantum-well laser diode on bulk GaN. Appl Phys Lett, 2015, 107, 151103 doi: 10.1063/1.4933257
[5]
Nagahama S I, Yanamoto T, Sano M, et al. Study of GaN-based laser diodes in near ultraviolet region. Jpn J Appl Phys, 2002, 41, 5 doi: 10.1143/JJAP.41.5
[6]
Masui S, Matsuyama Y, Yanamoto T, et al. 365 nm ultraviolet laser diodes composed of quaternary AlInGaN alloy. Jpn J Appl Phys, 2003, 42, L1318 doi: 10.1143/JJAP.42.L1318
[7]
Zhang Z Y, Kushimoto M, Sakai T, et al. A 271.8 nm deep-ultraviolet laser diode for room temperature operation. Appl Phys Express, 2019, 12, 124003 doi: 10.7567/1882-0786/ab50e0
[8]
Niass M I, Sharif M N, Wang Y F, et al. A contrivance of 277 nm DUV LD with B0.313Ga0.687N/B0.40Ga0.60N QWs and Al x Ga1– x N heterojunction grown on AlN substrate. J Semicond, 2019, 40, 122802 doi: 10.1088/1674-4926/40/12/122802
[9]
Nakamura S, Senoh M, Nagahama S I, et al. InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Appl Phys Lett, 1998, 72, 211 doi: 10.1063/1.120688
[10]
Yoshida H, Yamashita Y, Kuwabara M, et al. A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode. Nature Photon, 2008, 2, 551 doi: 10.1038/nphoton.2008.135
[11]
Yoshida H, Yamashita Y, Kuwabara M, et al. Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode. Appl Phys Lett, 2008, 93, 241106 doi: 10.1063/1.3050539
[12]
Taketomi H, Aoki Y, Takagi Y, et al. Over 1 W record-peak-power operation of a 338 nm AlGaN multiple-quantum-well laser diode on a GaN substrate. Jpn J Appl Phys, 2016, 55, 05FJ05 doi: 10.7567/JJAP.55.05FJ05
[13]
Zhang Z Y, Kushimoto M, Yoshikawa A, et al. Key temperature-dependent characteristics of AlGaN-based UV-C laser diode and demonstration of room-temperature continuous-wave lasing. Appl Phys Lett, 2022, 121, 222103 doi: 10.1063/5.0124480
[14]
Zhao D G, Yang J, Liu Z S, et al. Fabrication of room temperature continuous-wave operation GaN-based ultraviolet laser diodes. J Semicond, 2017, 38, 051001 doi: 10.1088/1674-4926/38/5/051001
[15]
Yang J, Wang B B, Zhao D G, et al. Realization of 366 nm GaN/AlGaN single quantum well ultraviolet laser diodes with a reduction of carrier loss in the waveguide layers. J Appl Phys, 2021, 130, 173105 doi: 10.1063/5.0069567
[16]
Yang J, Zhao D G, Liu Z S, et al. A 357.9 nm GaN/AlGaN multiple quantum well ultraviolet laser diode. J Semicond, 2022, 43, 010501 doi: 10.1088/1674-4926/43/1/010501
[17]
Yang J, Zhao D G, Liu Z S, et al. Room temperature continuous-wave operated 2.0-W GaN-based ultraviolet laser diodes. Opt Lett, 2022, 47, 1666 doi: 10.1364/OL.454340
[18]
Yang J, Zhao D G, Liu Z S, et al. Regulating absorption loss and carrier injection efficiency in ultraviolet laser diodes by changing waveguide layer structure. Opt Laser Technol, 2022, 156, 108574 doi: 10.1016/j.optlastec.2022.108574
[19]
Amano H, Collazo R, De Santi C, et al. The 2020 UV emitter roadmap. J Phys D: Appl Phys, 2020, 53, 503001 doi: 10.1088/1361-6463/aba64c
[20]
Guenther B D, Steel D G. Encyclopedia of modern optics. Academic Press, 2018
[21]
Guo Q A, Kirste R, Mita S, et al. Design of AlGaN-based quantum structures for low threshold UVC lasers. J Appl Phys, 2019, 126, 223101 doi: 10.1063/1.5125256
[22]
Cho Y H, Gainer G H, Fischer A J, et al. “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells. Appl Phys Lett, 1998, 73, 1370 doi: 10.1063/1.122164
[23]
Yang J, Zhao D G, Jiang D S, et al. Optical and structural characteristics of high indium content InGaN/GaN multi-quantum wells with varying GaN cap layer thickness. J Appl Phys, 2015, 117, 055709 doi: 10.1063/1.4907670
[24]
Yoshida H, Takagi Y, Kuwabara M, et al. Entirely crack-free ultraviolet GaN/AlGaN laser diodes grown on 2-in. sapphire substrate. Jpn J Appl Phys, 2007, 46, 5782 doi: 10.1143/JJAP.46.5782
[25]
Wang B B, Yang J, Zhao D G, et al. The mechanisms of AlGaN device buffer layer growth and crystalline quality improvement: Restraint of gallium residues, mismatch stress relief, and control of aluminum atom migration length. Crystals, 2022, 12, 1131 doi: 10.3390/cryst12081131
[26]
Ji Q B, Li L, Zhang W, et al. Dislocation reduction and stress relaxation of GaN and InGaN multiple quantum wells with improved performance via serpentine channel patterned mask. ACS Appl Mater Interfaces, 2016, 8, 21480 doi: 10.1021/acsami.6b07044
[27]
Tsuzuki H, Mori F, Takeda K, et al. High-performance UV emitter grown on high-crystalline-quality AlGaN underlying layer. Phys Status Solidi (a), 2009, 206, 1199 doi: 10.1002/pssa.200880784
[28]
Crawford M H, Allerman A A, Armstrong A M, et al. Laser diodes with 353 nm wavelength enabled by reduced-dislocation-density AlGaN templates. Appl Phys Express, 2015, 8, 112702 doi: 10.7567/APEX.8.112702
[29]
Zhao D G, Jiang D S, Yang H, et al. Effect of lightly Si doping on the minority carrier diffusion length in n-type GaN films. Appl Phys Lett, 2006, 88, 252101 doi: 10.1063/1.2213932
[30]
Warnick K H, Puzyrev Y, Roy T, et al. Room-temperature diffusive phenomena in semiconductors: The case of AlGaN. Phys Rev B, 2011, 84, 214109 doi: 10.1103/PhysRevB.84.214109
[31]
Puzyrev Y S, Roy T, Beck M, et al. Dehydrogenation of defects and hot-electron degradation in GaN high-electron-mobility transistors. J Appl Phys, 2011, 109, 034501 doi: 10.1063/1.3524185
[32]
Huang Y J, Yang J, Zhao D G, et al. Role of vacancy defects in reducing the responsivity of AlGaN Schottky barrier ultraviolet detectors. Nanomaterials, 2022, 12, 3148 doi: 10.3390/nano12183148
[33]
Yang J, Zhang Y H, Zhao D G, et al. Realization low resistivity of high AlN mole fraction Si-doped AlGaN by suppressing the formation native vacancies. J Cryst Growth, 2021, 570, 126245 doi: 10.1016/j.jcrysgro.2021.126245
[34]
Zhang L Q, Jiang D S, Zhu J J, et al. Confinement factor and absorption loss of AlInGaN based laser diodes emitting from ultraviolet to green. J Appl Phys, 2009, 105, 023104 doi: 10.1063/1.3068182
[35]
Chen P, Feng M X, Jiang D S, et al. Improvement of characteristics of InGaN-based laser diodes with undoped InGaN upper waveguide layer. J Appl Phys, 2012, 112, 113105 doi: 10.1063/1.4768287
[36]
Yoshida H, Kuwabara M, Yamashita Y, et al. The Current status of ultraviolet laser diodes. Phys Status Solidi A, 2011, 208, 1586 doi: 10.1002/pssa.201000870
[37]
Marona L, Wisniewski P, Prystawko P, et al. Degradation mechanisms in InGaN laser diodes grown on bulk GaN crystals. Appl Phys Lett, 2006, 88, 201111 doi: 10.1063/1.2204845
[38]
Takeya M, Mizuno T, Sasaki T, et al. Degradation in AlGaInN lasers. Phys Stat Sol (c), 2003, 7, 2292 doi: 10.1002/pssc.200303324
[39]
Meneghini M, Carraro S, Meneghesso G, et al. Degradation of InGaN/GaN laser diodes investigated by micro-cathodoluminescence and micro-photoluminescence. Appl Phys Lett, 2013, 103, 233506 doi: 10.1063/1.4834697
[40]
Marona L, Wiśniewski P, Leszczyński M, et al. Why InGaN laser-diode degradation is accompanied by the improvement of its thermal stability. Integrated Optoelectronic Devices 2008, 2008, 68940R doi: 10.1117/12.762220
[41]
Mura G, Vanzi M, Hempel M, et al. Analysis of GaN based high-power diode lasers after singular degradation events. Physica Rapid Research Ltrs, 2017, 11, 1700132 doi: 10.1002/pssr.201700132
[42]
Tomm J W, Kernke R, L Löffler, et al. Defect evolution during catastrophic optical damage in 450-nm emitting InGaN/GaN diode lasers. SPIE 10553, Novel in-Plane Semiconductor Lasers XVII, 2018, 1055308 doi: 10.1117/12.2286322
[43]
Strauss U, Somers A, Heine U, et al. GaInN laser diodes from 440 to 530nm: a performance study on single-mode and multi-mode R&D designs. Proc SPIE 10123, Novel in-Plane Semiconductor Lasers XVI, 2017, 101230A doi: 10.1117/12.2254504
[44]
Wang X W, Liu Z S, Zhao D G, et al. New mechanisms of cavity facet degradation for GaN-based laser diodes. J Appl Phys, 2021, 129, 223106 doi: 10.1063/5.0051126
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 703 Times PDF downloads: 150 Times Cited by: 0 Times

    History

    Received: 12 June 2023 Revised: 25 August 2023 Online: Accepted Manuscript: 13 October 2023Corrected proof: 30 October 2023Uncorrected proof: 20 November 2023Published: 10 January 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jing Yang, Degang Zhao, Zongshun Liu, Yujie Huang, Baibin Wang, Xiaowei Wang, Yuheng Zhang, Zhenzhuo Zhang, Feng Liang, Lihong Duan, Hai Wang, Yongsheng Shi. GaN based ultraviolet laser diodes[J]. Journal of Semiconductors, 2024, 45(1): 011501. doi: 10.1088/1674-4926/45/1/011501 J Yang, D G Zhao, Z S Liu, Y J Huang, B B Wang, X W Wang, Y H Zhang, Z Z Zhang, F Liang, L H Duan, H Wang, Y S Shi. GaN based ultraviolet laser diodes[J]. J. Semicond, 2024, 45(1): 011501. doi: 10.1088/1674-4926/45/1/011501Export: BibTex EndNote
      Citation:
      Jing Yang, Degang Zhao, Zongshun Liu, Yujie Huang, Baibin Wang, Xiaowei Wang, Yuheng Zhang, Zhenzhuo Zhang, Feng Liang, Lihong Duan, Hai Wang, Yongsheng Shi. GaN based ultraviolet laser diodes[J]. Journal of Semiconductors, 2024, 45(1): 011501. doi: 10.1088/1674-4926/45/1/011501

      J Yang, D G Zhao, Z S Liu, Y J Huang, B B Wang, X W Wang, Y H Zhang, Z Z Zhang, F Liang, L H Duan, H Wang, Y S Shi. GaN based ultraviolet laser diodes[J]. J. Semicond, 2024, 45(1): 011501. doi: 10.1088/1674-4926/45/1/011501
      Export: BibTex EndNote

      GaN based ultraviolet laser diodes

      doi: 10.1088/1674-4926/45/1/011501
      More Information
      • Author Bio:

        Jing Yang Jing Yang received her Ph.D. from the University of Chinese Academy of Sciences (UCAS) in 2015. She then joined the Institute of Semiconductors, Chinese Academy of Sciences. She is currently an associate research fellow. Her current research interests include metal organic chemical vapor deposition growth of III-Nitride material and devices, especially in GaN-based ultra violet and green laser diodes. She joined in the Youth Innovation Promotion Association of Chinese Academy of Sciences in 2019, and won the Beijing Nova Program in 2020

        Degang Zhao Degang Zhao received his B.Sc. and M.Sc. degrees from the University of Electronic Science and Technology of China in 1994 and 1997, respectively. He received his Ph.D. from the Chinese Academy of Sciences in 2000. Later on, he joined in Institute of Semiconductors, Chinese Academy of Sciences, Beijing. He won the National Natural Science Foundation for Distinguished Young Scholars in 2009, and won the National Award for Youth in Science and Technology of China in 2011. His research interests are mainly focused on GaN-based optoelectronic materials and devices, such as laser diodes and ultraviolet photodetectors. He has many research achievements in material growth and device fabrication, and has authored or co-authored over 300 articles in refereed journals and holds more than 40 patents

      • Corresponding author: dgzhao@red.semi.ac.cn
      • Received Date: 2023-06-12
      • Revised Date: 2023-08-25
      • Available Online: 2023-10-13

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return