ARTICLES

Enhanced magnetic anisotropy and high hole mobility in magnetic semiconductor Ga1-x-yFexNiySb

Zhi Deng1, 2, Hailong Wang1, 2, , Qiqi Wei1, 2, Lei Liu1, 2, Hongli Sun1, 2, Dong Pan1, 2, Dahai Wei1, 2 and Jianhua Zhao1, 2

+ Author Affiliations

 Corresponding author: Hailong Wang, allen@semi.ac.cn

PDF

Turn off MathJax

Abstract: (Ga,Fe)Sb is a promising magnetic semiconductor (MS) for spintronic applications because its Curie temperature (TC) is above 300 K when the Fe concentration is higher than 20%. However, the anisotropy constant Ku of (Ga,Fe)Sb is below 7.6 × 103 erg/cm3 when Fe concentration is lower than 30%, which is one order of magnitude lower than that of (Ga,Mn)As. To address this issue, we grew Ga1-x-yFexNiySb films with almost the same x (≈24%) and different y to characterize their magnetic and electrical transport properties. We found that the magnetic anisotropy of Ga0.76-yFe0.24NiySb can be enhanced by increasing y, in which Ku is negligible at y = 1.7% but increases to 3.8 × 105 erg/cm3 at y = 6.1% (TC = 354 K). In addition, the hole mobility (µ) of Ga1-x-yFexNiySb reaches 31.3 cm2/(V∙s) at x = 23.7%, y = 1.7% (TC = 319 K), which is much higher than the mobility of Ga1-xFexSb at x = 25.2% (µ = 6.2 cm2/(V∙s)). Our results provide useful information for enhancing the magnetic anisotropy and hole mobility of (Ga,Fe)Sb by using Ni co-doping.

Key words: magnetic semiconductormolecular beam epitaxyFe-Ni co-dopingmagnetic anisotropyhole mobility



[1]
Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281, 951 doi: 10.1126/science.281.5379.951
[2]
Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287, 1019 doi: 10.1126/science.287.5455.1019
[3]
Chiba D, Sawicki M, Nishitani Y, et al. Magnetization vector manipulation by electric fields. Nature, 2008, 455, 515 doi: 10.1038/nature07318
[4]
Jungwirth T, Wunderlich J, Novák V, et al. Spin-dependent phenomena and device concepts explored in (Ga, Mn)As. Rev Mod Phys, 2014, 86, 855 doi: 10.1103/RevModPhys.86.855
[5]
Dietl T, Ohno H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev Mod Phys, 2014, 86, 187 doi: 10.1103/RevModPhys.86.187
[6]
Ohno H, Munekata H, Penney T, et al. Magnetotransport properties of p-type (In, Mn)As diluted magnetic III-V semiconductors. Phys Rev Lett, 1992, 68, 2664 doi: 10.1103/PhysRevLett.68.2664
[7]
Koshihara S, Oiwa A, Hirasawa M, et al. Ferromagnetic order induced by photogenerated carriers in magnetic III-V semiconductor heterostructures of (In, Mn)As/GaSb. Phys Rev Lett, 1997, 78, 4617 doi: 10.1103/PhysRevLett.78.4617
[8]
Akai H. Ferromagnetism and its stability in the diluted magnetic semiconductor (In, Mn)As. Phys Rev Lett, 1998, 81, 3002 doi: 10.1103/PhysRevLett.81.3002
[9]
Oiwa A, Endo A, Katsumoto S, et al. Magnetic and transport properties of the ferromagnetic semiconductor heterostructures (In, Mn)As/(Ga, Al)Sb. Phys Rev B, 1999, 59, 5826 doi: 10.1103/PhysRevB.59.5826
[10]
Schallenberg T, Munekata H. Preparation of ferromagnetic (In, Mn)As with a high Curie temperature of 90K. Appl Phys Lett, 2006, 89, 042507 doi: 10.1063/1.2236210
[11]
Ohno H, Shen A, Matsukura F, et al. (Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett, 1996, 69, 363 doi: 10.1063/1.118061
[12]
Matsukura F, Ohno H, Shen A, et al. Transport properties and origin of ferromagnetism in (Ga, Mn)As. Phys Rev B, 1998, 57, R2037 doi: 10.1103/PhysRevB.57.R2037
[13]
Chen L, Yang X, Yang F H, et al. Enhancing the curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584 doi: 10.1021/nl201187m
[14]
Wang H L, Ma J L, Zhao J H. Giant modulation of magnetism in (Ga, Mn)As ultrathin films via electric field. J Semicond, 2019, 40, 092501 doi: 10.1088/1674-4926/40/9/092501
[15]
Wang H L, Ma J L, Wei Q Q, et al. Mn doping effects on the gate-tunable transport properties of Cd3As2 films epitaxied on GaAs. J Semicond, 2020, 41, 072903 doi: 10.1088/1674-4926/41/7/072903
[16]
Tu N T, Hai P N, Anh L D, et al. (Ga, Fe)Sb: A p-type ferromagnetic semiconductor. Appl Phys Lett, 2014, 105, 132402 doi: 10.1063/1.4896539
[17]
Tu N T, Hai P N, Anh L D, et al. Magnetic properties and intrinsic ferromagnetism in (Ga, Fe)Sb ferromagnetic semiconductors. Phys Rev B, 2015, 92, 144403 doi: 10.1103/PhysRevB.92.144403
[18]
Tu N T, Hai P N, Anh L D, et al. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga, Fe)Sb. Appl Phys Lett, 2016, 108, 192401 doi: 10.1063/1.4948692
[19]
Goel S, Anh L D, Ohya S, et al. Ferromagnetic resonance and control of magnetic anisotropy by epitaxial strain in the ferromagnetic semiconductor (Ga0.8, Fe0.2)Sb at room temperature. Phys Rev B, 2019, 99, 014431 doi: 10.1103/PhysRevB.99.014431
[20]
Goel S, Anh L D, Ohya S, et al. In-plane to perpendicular magnetic anisotropy switching in heavily-Fe-doped ferromagnetic semiconductor (Ga, Fe)Sb with high Curie temperature. Phys Rev Materials , 2019, 084417 doi: 10.1103/PhysRevMaterials.3.084417
[21]
Tu N T, Hai P N, Anh L D, et al. High-temperature ferromagnetism in new n-type Fe-doped ferromagnetic semiconductor (In, Fe)Sb. Appl Phys Express, 2018, 11, 063005 doi: 10.7567/APEX.11.063005
[22]
Nguyen T T, Pham N, Le D, et al. Electrical control of ferromagnetism in the n-type ferromagnetic semiconductor (In, Fe)Sb with high Curie temperature. Appl Phys Lett, 2018, 112, 122409 doi: 10.1063/1.5022828
[23]
Nguyen T T, Pham N H, Le D A, et al. Heavily Fe-doped n-type ferromagnetic semiconductor (In, Fe)Sb with high Curie temperature and large magnetic anisotropy. 2019 Compound Semiconductor Week (CSW), Nara, Japan, 2019, 1 doi: 10.1109/ICIPRM.2019.8819236
[24]
Sakamoto S, Tu N T, Takeda Y, et al. Electronic structure of the high-TC ferromagnetic semiconductor (Ga, Fe)Sb: X-ray magnetic circular dichroism and resonance photoemission spectroscopy studies. Phys Rev B, 2019, 100, 035204 doi: 10.1103/PhysRevB.100.035204
[25]
Sriharsha K, Anh L D, Tu N T, et al. Magneto-optical spectra and the presence of an impurity band in p-type ferromagnetic semiconductor (Ga, Fe)Sb with high Curie temperature. APL Mater, 2019, 7, 021105 doi: 10.1063/1.5083175
[26]
Tanaka M. Recent progress in ferromagnetic semiconductors and spintronics devices. Jpn J Appl Phys, 2021, 60, 010101 doi: 10.35848/1347-4065/abcadc
[27]
Stefanowicz W, Śliwa C, Aleshkevych P, et al. Magnetic anisotropy of epitaxial (Ga, Mn)As on (113)A GaAs. Phys Rev B, 2010, 81, 155203 doi: 10.1103/PhysRevB.81.155203
Fig. 1.  (Color online) (a) Schematic layer structure of Ga1-x-yFexNiySb samples. (b) The RHEED pattern of an undoped GaSb sample. (c)−(f) RHEED patterns taken along the [110] azimuth after the growth of Ga1-x-yFexNiySb layers for samples B1−B4 (x ≈ 24%, y = 1.7%−6.1%).

Fig. 2.  (Color online) (a) XRD spectra of Ga1-x-yFexNiySb samples A1−A4 (x = 25.2%−29.8%, y = 0). (b) XRD spectra of samples B1−B4 (x ≈ 24%, y = 1.7%−6.1%). (c) x dependence of the lattice constant of A1−A4. (d) y dependence of the lattice constant of B1−B4.

Fig. 3.  (Color online) (a) The cross-sectional STEM image of typical Ga1-x-yFexNiySb sample B4 (x = 24.3%, y = 6.1%). (b) SAED pattern of the Ga1-x-yFexNiySb layers in sample B4. (c) The area marked by red rectangles shown in Fig. 3(a).

Fig. 4.  (Color online) Magnetic hysteresis curves (MH) measured at 10 K of samples B1−B4 (x ≈ 24%, y = 1.7%−6.1%) with a magnetic field applied along the [001] axis and the [110] axis. The blue and red arrows in (a)−(d) signify the perpendicular saturation magnetic fields and the positions of HS.

Fig. 5.  (Color online) The magnetic field dependence of Hall resistance curves (RHallH) of the samples B1−B4 (x ≈ 24%, y = 1.7%−6.1%) measured at 10 K.

Table 1.   Curie temperature TC, hole mobility μ at 10 K, saturation magnetization MS and anisotropy constant Ku of Ga1-x-yFexNiySb films with different Fe concentration x and Ni concentration y.

Sample x (%) y (%) TC (K) μ (cm2/(V∙s)) MS (emu/cc) Ku (erg/cc)
A1 25.2 0 337 6.2 142 −1.8 × 103
A2 26.9 0 351 3.4 144 1.2 × 103
A3 28.0 0 362 1.9 147 4.5 ×103
A4 29.8 0 375 1.1 151 7.6 ×103
B1 23.7 1.7 319 31.3 148 −2.1 × 103
B2 24.2 2.8 336 17.9 152 1.4 × 105
B3 23.9 4.5 343 7.5 159 2.3 × 105
B4 24.3 6.1 354 4.6 165 3.8 × 105
DownLoad: CSV
[1]
Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281, 951 doi: 10.1126/science.281.5379.951
[2]
Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287, 1019 doi: 10.1126/science.287.5455.1019
[3]
Chiba D, Sawicki M, Nishitani Y, et al. Magnetization vector manipulation by electric fields. Nature, 2008, 455, 515 doi: 10.1038/nature07318
[4]
Jungwirth T, Wunderlich J, Novák V, et al. Spin-dependent phenomena and device concepts explored in (Ga, Mn)As. Rev Mod Phys, 2014, 86, 855 doi: 10.1103/RevModPhys.86.855
[5]
Dietl T, Ohno H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev Mod Phys, 2014, 86, 187 doi: 10.1103/RevModPhys.86.187
[6]
Ohno H, Munekata H, Penney T, et al. Magnetotransport properties of p-type (In, Mn)As diluted magnetic III-V semiconductors. Phys Rev Lett, 1992, 68, 2664 doi: 10.1103/PhysRevLett.68.2664
[7]
Koshihara S, Oiwa A, Hirasawa M, et al. Ferromagnetic order induced by photogenerated carriers in magnetic III-V semiconductor heterostructures of (In, Mn)As/GaSb. Phys Rev Lett, 1997, 78, 4617 doi: 10.1103/PhysRevLett.78.4617
[8]
Akai H. Ferromagnetism and its stability in the diluted magnetic semiconductor (In, Mn)As. Phys Rev Lett, 1998, 81, 3002 doi: 10.1103/PhysRevLett.81.3002
[9]
Oiwa A, Endo A, Katsumoto S, et al. Magnetic and transport properties of the ferromagnetic semiconductor heterostructures (In, Mn)As/(Ga, Al)Sb. Phys Rev B, 1999, 59, 5826 doi: 10.1103/PhysRevB.59.5826
[10]
Schallenberg T, Munekata H. Preparation of ferromagnetic (In, Mn)As with a high Curie temperature of 90K. Appl Phys Lett, 2006, 89, 042507 doi: 10.1063/1.2236210
[11]
Ohno H, Shen A, Matsukura F, et al. (Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett, 1996, 69, 363 doi: 10.1063/1.118061
[12]
Matsukura F, Ohno H, Shen A, et al. Transport properties and origin of ferromagnetism in (Ga, Mn)As. Phys Rev B, 1998, 57, R2037 doi: 10.1103/PhysRevB.57.R2037
[13]
Chen L, Yang X, Yang F H, et al. Enhancing the curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584 doi: 10.1021/nl201187m
[14]
Wang H L, Ma J L, Zhao J H. Giant modulation of magnetism in (Ga, Mn)As ultrathin films via electric field. J Semicond, 2019, 40, 092501 doi: 10.1088/1674-4926/40/9/092501
[15]
Wang H L, Ma J L, Wei Q Q, et al. Mn doping effects on the gate-tunable transport properties of Cd3As2 films epitaxied on GaAs. J Semicond, 2020, 41, 072903 doi: 10.1088/1674-4926/41/7/072903
[16]
Tu N T, Hai P N, Anh L D, et al. (Ga, Fe)Sb: A p-type ferromagnetic semiconductor. Appl Phys Lett, 2014, 105, 132402 doi: 10.1063/1.4896539
[17]
Tu N T, Hai P N, Anh L D, et al. Magnetic properties and intrinsic ferromagnetism in (Ga, Fe)Sb ferromagnetic semiconductors. Phys Rev B, 2015, 92, 144403 doi: 10.1103/PhysRevB.92.144403
[18]
Tu N T, Hai P N, Anh L D, et al. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga, Fe)Sb. Appl Phys Lett, 2016, 108, 192401 doi: 10.1063/1.4948692
[19]
Goel S, Anh L D, Ohya S, et al. Ferromagnetic resonance and control of magnetic anisotropy by epitaxial strain in the ferromagnetic semiconductor (Ga0.8, Fe0.2)Sb at room temperature. Phys Rev B, 2019, 99, 014431 doi: 10.1103/PhysRevB.99.014431
[20]
Goel S, Anh L D, Ohya S, et al. In-plane to perpendicular magnetic anisotropy switching in heavily-Fe-doped ferromagnetic semiconductor (Ga, Fe)Sb with high Curie temperature. Phys Rev Materials , 2019, 084417 doi: 10.1103/PhysRevMaterials.3.084417
[21]
Tu N T, Hai P N, Anh L D, et al. High-temperature ferromagnetism in new n-type Fe-doped ferromagnetic semiconductor (In, Fe)Sb. Appl Phys Express, 2018, 11, 063005 doi: 10.7567/APEX.11.063005
[22]
Nguyen T T, Pham N, Le D, et al. Electrical control of ferromagnetism in the n-type ferromagnetic semiconductor (In, Fe)Sb with high Curie temperature. Appl Phys Lett, 2018, 112, 122409 doi: 10.1063/1.5022828
[23]
Nguyen T T, Pham N H, Le D A, et al. Heavily Fe-doped n-type ferromagnetic semiconductor (In, Fe)Sb with high Curie temperature and large magnetic anisotropy. 2019 Compound Semiconductor Week (CSW), Nara, Japan, 2019, 1 doi: 10.1109/ICIPRM.2019.8819236
[24]
Sakamoto S, Tu N T, Takeda Y, et al. Electronic structure of the high-TC ferromagnetic semiconductor (Ga, Fe)Sb: X-ray magnetic circular dichroism and resonance photoemission spectroscopy studies. Phys Rev B, 2019, 100, 035204 doi: 10.1103/PhysRevB.100.035204
[25]
Sriharsha K, Anh L D, Tu N T, et al. Magneto-optical spectra and the presence of an impurity band in p-type ferromagnetic semiconductor (Ga, Fe)Sb with high Curie temperature. APL Mater, 2019, 7, 021105 doi: 10.1063/1.5083175
[26]
Tanaka M. Recent progress in ferromagnetic semiconductors and spintronics devices. Jpn J Appl Phys, 2021, 60, 010101 doi: 10.35848/1347-4065/abcadc
[27]
Stefanowicz W, Śliwa C, Aleshkevych P, et al. Magnetic anisotropy of epitaxial (Ga, Mn)As on (113)A GaAs. Phys Rev B, 2010, 81, 155203 doi: 10.1103/PhysRevB.81.155203

Supplementary_Information-23080008.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 367 Times PDF downloads: 36 Times Cited by: 0 Times

    History

    Received: 06 August 2023 Revised: 04 September 2023 Online: Accepted Manuscript: 10 November 2023Uncorrected proof: 20 December 2023Published: 10 January 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhi Deng, Hailong Wang, Qiqi Wei, Lei Liu, Hongli Sun, Dong Pan, Dahai Wei, Jianhua Zhao. Enhanced magnetic anisotropy and high hole mobility in magnetic semiconductor Ga1-x-yFexNiySb[J]. Journal of Semiconductors, 2024, 45(1): 012101. doi: 10.1088/1674-4926/45/1/012101 Z Deng, H L Wang, Q Q Wei, L Liu, H L Sun, D Pan, D H Wei, J H Zhao. Enhanced magnetic anisotropy and high hole mobility in magnetic semiconductor Ga1-x-yFexNiySb[J]. J. Semicond, 2024, 45(1): 012101. doi: 10.1088/1674-4926/45/1/012101Export: BibTex EndNote
      Citation:
      Zhi Deng, Hailong Wang, Qiqi Wei, Lei Liu, Hongli Sun, Dong Pan, Dahai Wei, Jianhua Zhao. Enhanced magnetic anisotropy and high hole mobility in magnetic semiconductor Ga1-x-yFexNiySb[J]. Journal of Semiconductors, 2024, 45(1): 012101. doi: 10.1088/1674-4926/45/1/012101

      Z Deng, H L Wang, Q Q Wei, L Liu, H L Sun, D Pan, D H Wei, J H Zhao. Enhanced magnetic anisotropy and high hole mobility in magnetic semiconductor Ga1-x-yFexNiySb[J]. J. Semicond, 2024, 45(1): 012101. doi: 10.1088/1674-4926/45/1/012101
      Export: BibTex EndNote

      Enhanced magnetic anisotropy and high hole mobility in magnetic semiconductor Ga1-x-yFexNiySb

      doi: 10.1088/1674-4926/45/1/012101
      More Information
      • Author Bio:

        Zhi Deng Zhi Deng obtained his B.E. degree from Center of Materials Science and Optoelectronics Engineering in 2020 at University of Chinese Academy of Sciences. He then joined the State Key Laboratory of Superlattices and Microstructures under the supervision of Prof. Jianhua Zhao. His research focuses on Fe-based Ⅲ−Ⅴ magnetic semiconductors

        Hailong Wang Hailong Wang received his B.Sc. degree from the School of Physics of Peking University in 2009, and a PhD degree from the University of Chinese Academy of Sciences in 2014. From 2014 to 2016, he was a postdoc at the Institute of Physics in Chinese Academy of Sciences, and then worked in the Institute of Semiconductors in Chinese Academy of Sciences. His current interests include Ⅲ−Ⅴ magnetic semiconductors, semiconductor two-dimensional electron gas and magnetic metal/semiconductor heterostructures

      • Corresponding author: allen@semi.ac.cn
      • Received Date: 2023-08-06
      • Revised Date: 2023-09-04
      • Available Online: 2023-11-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return