ARTICLES

Two-step growth of β-Ga2O3 on c-plane sapphire using MOCVD for solar-blind photodetector

Peipei Ma1, 2, Jun Zheng1, 2, , Xiangquan Liu1, 2, Zhi Liu1, 2, Yuhua Zuo1, 2 and Buwen Cheng1, 2

+ Author Affiliations

 Corresponding author: Jun Zheng, zhengjun@semi.ac.cn

PDF

Turn off MathJax

Abstract: In this work, a two-step metal organic chemical vapor deposition (MOCVD) method was applied for growing β-Ga2O3 film on c-plane sapphire. Optimized buffer layer growth temperature (TB) was found at 700 °C and the β-Ga2O3 film with full width at half maximum (FWHM) of 0.66° was achieved. A metal−semiconductor−metal (MSM) solar-blind photodetector (PD) was fabricated based on the β-Ga2O3 film. Ultrahigh responsivity of 1422 A/W @ 254 nm and photo-to-dark current ratio (PDCR) of 106 at 10 V bias were obtained. The detectivity of 2.5 × 1015 Jones proved that the photodetector has outstanding performance in detecting weak signals. Moreover, the photodetector exhibited superior wavelength selectivity with rejection ratio (R250 nm/R400 nm) of 105. These results indicate that the two-step method is a promising approach for preparation of high-quality β-Ga2O3 films for high-performance solar-blind photodetectors.

Key words: MOCVDtwo-step growthβ-Ga2O3solar-blind photodetectorresponsivity



[1]
Fu B, Jian G Z, Mu W X, et al. Crystal growth and design of Sn-doped β-Ga2O3: Morphology, defect and property studies of cylindrical crystal by EFG. J Alloys Compd, 2022, 896, 162830 doi: 10.1016/j.jallcom.2021.162830
[2]
Sun H D, Li K H, Torres Castanedo C G, et al. HCl flow-induced phase change of α-, β-, and ε-Ga2O3 films grown by MOCVD. Cryst Growth Des, 2018, 18, 2370 doi: 10.1021/acs.cgd.7b01791
[3]
Zhang J C, Dong P F, Dang K, et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes. Nat Commun, 2022, 13, 3900 doi: 10.1038/s41467-022-31664-y
[4]
Sheoran H, Fang S, Liang F Z, et al. High performance of zero-power-consumption MOCVD-grown β-Ga2O3-based solar-blind photodetectors with ultralow dark current and high-temperature functionalities. ACS Appl Mater Interfaces, 2022, 14, 52096 doi: 10.1021/acsami.2c08511
[5]
Hou X H, Zhao X L, Zhang Y, et al. High-performance harsh-environment-resistant GaOX solar-blind photodetectors via defect and doping engineering. Adv Mater, 2022, 34, 2106923 doi: 10.1002/adma.202106923
[6]
Ngo T S, Le D D, Vuong N Q, et al. Systematic investigation of growth and properties of Ga2O3 films on c-plane sapphire substrates prepared by plasma-assisted molecular beam epitaxy. ECS J Solid State Sci Technol, 2022, 11, 035008 doi: 10.1149/2162-8777/ac5d65
[7]
Murakami H, Nomura K, Goto K, et al. Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl Phys Express, 2015, 8, 015503 doi: 10.7567/APEX.8.015503
[8]
Saha S, Meng L Y, Feng Z X, et al. Schottky diode characteristics on high-growth rate LPCVD β -Ga2O3 films on (010) and (001) Ga2O3 substrates. Appl Phys Lett, 2022, 120, 122106 doi: 10.1063/5.0083659
[9]
Rafique S, Han L, Neal A T, et al. Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition. Appl Phys Lett, 2016, 109, 132103. doi: 10.1063/1.4963820
[10]
Xu Y, An Z Y, Zhang L X, et al. Solar blind deep ultraviolet β-Ga2O3 photodetectors grown on sapphire by the Mist-CVD method. Opt Mater Express, 2018, 8, 2941 doi: 10.1364/OME.8.002941
[11]
Hu D Q, Zhuang S W, Ma Z Z, et al. Study on the optical properties of β-Ga2O3 films grown by MOCVD. J Mater Sci: Mater Electron, 2017, 28, 10997 doi: 10.1007/s10854-017-6882-x
[12]
Anamika S P, Sriram K, Swanand V S, et al. High responsivity in molecular beam epitaxy grown β-Ga2O3 metal semiconductor metal solar blind deep-UV photodetector. Appl Phys Lett, 2017, 110, 221107 doi: 10.1063/1.4984904
[13]
Qian L X, Wu Z H, Zhang Y Y, et al. Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide. ACS Photonics, 2017, 4, 2203 doi: 10.1021/acsphotonics.7b00359
[14]
Arora K, Goel N, Kumar M, et al. Ultrahigh performance of self-powered β-Ga2O3 thin film solar-blind photodetector grown on cost-effective Si substrate using high-temperature seed layer. ACS Photonics, 2018, 5, 2391 doi: 10.1021/acsphotonics.8b00174
[15]
Cheng Y L, Zhang C F, Xu Y, et al. Heteroepitaxial growth of β-Ga2O3 thin films on c-plane sapphire substrates with β-(Al x Ga1- x )2O3 intermediate buffer layer by mist-CVD method. Mater Today Commun, 2021, 29, 102766 doi: 10.1016/j.mtcomm.2021.102766
[16]
Zhang Y B, Zheng J, Ma P P, et al. Growth and characterization of β-Ga2O3 thin films grown on off-angled Al2O3 substrates by metal-organic chemical vapor deposition. J Semicond, 2022, 43, 092801 doi: 10.1088/1674-4926/43/9/092801
[17]
Ma P P, Zheng J, Zhang Y B, et al. Investigation on n-type (−201) β-Ga2O3 ohmic contact via Si ion implantation. Tsinghua Sci Technol, 2022, 28, 150 doi: 10.26599/TST.2021.9010039
[18]
Ma P P, Zheng J, Zhang Y B, et al. Lateral β-Ga2O3 Schottky barrier diode fabricated on (–201) single crystal substrate and its temperature-dependent current–voltage characteristics. Chin Phys B, 2022, 31, 047302 doi: 10.1088/1674-1056/ac2729
[19]
Joshi G, Chauhan Y S, Verma A. Temperature dependence of β-Ga2O3 heteroepitaxy on c-plane sapphire using low pressure chemical vapor deposition. J Alloys Compd, 2021, 883, 160799 doi: 10.1016/j.jallcom.2021.160799
[20]
Li H R, Wang Y H, Cao J, et al. Enhanced solar-blind photoresponse characteristics in β-Ga2O3 epitaxial films on large miscut sapphire substrates. J Alloys Compd, 2021, 877, 160143 doi: 10.1016/j.jallcom.2021.160143
[21]
Jiao Y J, Jiang Q, Meng J H, et al. Growth and characteristics of β-Ga2O3 thin films on sapphire (0001) by low pressure chemical vapour deposition. Vacuum, 2021, 189, 110253 doi: 10.1016/j.vacuum.2021.110253
[22]
Xu W L, Shi J C, Li Y W, et al. Study of β-Ga2O3 films hetero-epitaxially grown on off-angled sapphire substrates by halide vapor phase epitaxy. Mater Lett, 2021, 289, 129411 doi: 10.1016/j.matlet.2021.129411
[23]
Ma Y J, Tang W B, Chen T W, et al. Effect of off-axis substrate angles on β-Ga2O3 thin films and solar-blind ultraviolet photodetectors grown on sapphire by MOCVD. Mater Sci Semicond Process, 2021, 131, 105856 doi: 10.1016/j.mssp.2021.105856
[24]
Qin Y A, Li L H, Zhao X L, et al. Metal–semiconductor–metal ε-Ga2O3 solar-blind photodetectors with a record-high responsivity rejection ratio and their gain mechanism. ACS Photonics, 2020, 7, 812 doi: 10.1021/acsphotonics.9b01727
[25]
Kim S, Kim J. Highly selective ozone-treated β-Ga2O3 solar-blind deep-UV photodetectors. Appl Phys Lett, 2020, 117, 261101 doi: 10.1063/5.0030400
[26]
Li Y Q, Zhang D, Lin R C, et al. Graphene interdigital electrodes for improving sensitivity in a Ga2O3: Zn deep-ultraviolet photoconductive detector. ACS Appl Mater Interfaces, 2019, 11, 1013 doi: 10.1021/acsami.8b14380
[27]
Zhang D, Zheng W, Lin R C, et al. High quality β-Ga2O3 film grown with N2O for high sensitivity solar-blind-ultraviolet photodetector with fast response speed. J Alloys Compd, 2018, 735, 150 doi: 10.1016/j.jallcom.2017.11.037
[28]
Kong W Y, Wu G A, Wang K Y, et al. Graphene- β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv Mater, 2016, 28, 10725 doi: 10.1002/adma.201604049
[29]
Qian L X, Liu H Y, Zhang H F, et al. Simultaneously improved sensitivity and response speed of β-Ga2O3 solar-blind photodetector via localized tuning of oxygen deficiency. Appl Phys Lett, 2019, 114, 113506 doi: 10.1063/1.5088665
[30]
Wang Y H, Cui W J, Yu J E, et al. One-step growth of amorphous/crystalline Ga2O3 phase junctions for high-performance solar-blind photodetection. ACS Appl Mater Interfaces, 2019, 11, 45922 doi: 10.1021/acsami.9b17409
[31]
Zhou H T, Cong L J, Ma J G, et al. High-performance high-temperature solar-blind photodetector based on polycrystalline Ga2O3 film. J Alloys Compd, 2020, 847, 156536 doi: 10.1016/j.jallcom.2020.156536
[32]
Oh S, Kim C K, Kim J. High responsivity β-Ga2O3 metal–semiconductor–metal solar-blind photodetectors with ultraviolet transparent graphene electrodes. ACS Photonics, 2018, 5, 1123 doi: 10.1021/acsphotonics.7b01486
[33]
Chen Y C, Lu Y J, Liu Q, et al. Ga2O3 photodetector arrays for solar-blind imaging. J Mater Chem C, 2019, 7, 2557 doi: 10.1039/C8TC05251D
[34]
Li M Q, Yang N, Wang G G, et al. Highly preferred orientation of Ga2O3 films sputtered on SiC substrates for deep UV photodetector application. Appl Surf Sci, 2019, 471, 694 doi: 10.1016/j.apsusc.2018.12.045
[35]
Li Y N, Li Y Q, Ji Y, et al. Sol-gel preparation of Sn doped gallium oxide films for application in solar-blind ultraviolet photodetectors. J Mater Sci, 2022, 57, 1186 doi: 10.1007/s10853-021-06680-w
[36]
Hu G C, Shan C X, Zhang N, et al. High gain Ga2O3 solar-blind photodetectors realized via a carrier multiplication process. Opt Express, 2015, 23, 13554 doi: 10.1364/OE.23.013554
[37]
Qian L X, Zhang H F, Lai P T, et al. High-sensitivity β-Ga2O3 solar-blind photodetector on high-temperature pretreated c-plane sapphire substrate. Opt Mater Express, 2017, 7, 3643 doi: 10.1364/OME.7.003643
[38]
Hou X H, Sun H D, Long S B, et al. Ultrahigh-performance solar-blind photodetector based on α-phase- dominated Ga2O3 film with record low dark current of 81 fA. IEEE Electron Device Lett, 2019, 40, 1483 doi: 10.1109/LED.2019.2932140
[39]
Pintor-Monroy M I, Murillo-Borjas B L, Quevedo-Lopez M A. Nanocrystalline and polycrystalline β-Ga2O3 thin films for deep ultraviolet detectors. ACS Appl Electron Mater, 2020, 2, 3358 doi: 10.1021/acsaelm.0c00643
[40]
Lin R C, Zheng W, Zhang D, et al. High-performance graphene/β-Ga2O3 heterojunction deep-ultraviolet photodetector with hot-electron excited carrier multiplication. ACS Appl Mater Interfaces, 2018, 10, 22419 doi: 10.1021/acsami.8b05336
[41]
Liu Z, Wang X A, Liu Y Y, et al. A high-performance ultraviolet solar-blind photodetector based on a β-Ga2O3 Schottky photodiode. J Mater Chem C, 2019, 7, 13920 doi: 10.1039/C9TC04912F
Fig. 1.  (Color online) (a) XRD ω−2θ scan and (b) FWHM of rocking curve for β-Ga2O3 films grown at different TB. Inset shows the XRD ω scan for films.

Fig. 2.  (Color online) (a) AFM images and (b) RMS roughness of β-Ga2O3 films, (c) film thicknesses obtained from the cross-sectional SEM. Inset shows the cross-sectional image of film grown at TB = 700 °C.

Fig. 3.  (Color online) (a) The optical microscope diagram and (b) structural diagram of MSM photodetector. (c) The I−V characteristics of the MSM photodetector in the dark and illuminated by 254 and 365 nm. (d) The energy band diagram and photogenerated carriers of MSM β-Ga2O3 detector with external bias under 254 nm illumination.

Fig. 4.  (Color online) (a) The time-dependent photoresponse of the Ga2O3 photodetector with external bias to 254 nm illumination, (b) the experimental data and the fitting curve of rise and decay process.

Fig. 5.  (Color online) (a) The photocurrent spectrum of β-Ga2O3 MSM detector at −1 V bias in semilog scale, (b) the responsivity vs detectivity of different solar-blind photodetectors[3241].

[1]
Fu B, Jian G Z, Mu W X, et al. Crystal growth and design of Sn-doped β-Ga2O3: Morphology, defect and property studies of cylindrical crystal by EFG. J Alloys Compd, 2022, 896, 162830 doi: 10.1016/j.jallcom.2021.162830
[2]
Sun H D, Li K H, Torres Castanedo C G, et al. HCl flow-induced phase change of α-, β-, and ε-Ga2O3 films grown by MOCVD. Cryst Growth Des, 2018, 18, 2370 doi: 10.1021/acs.cgd.7b01791
[3]
Zhang J C, Dong P F, Dang K, et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes. Nat Commun, 2022, 13, 3900 doi: 10.1038/s41467-022-31664-y
[4]
Sheoran H, Fang S, Liang F Z, et al. High performance of zero-power-consumption MOCVD-grown β-Ga2O3-based solar-blind photodetectors with ultralow dark current and high-temperature functionalities. ACS Appl Mater Interfaces, 2022, 14, 52096 doi: 10.1021/acsami.2c08511
[5]
Hou X H, Zhao X L, Zhang Y, et al. High-performance harsh-environment-resistant GaOX solar-blind photodetectors via defect and doping engineering. Adv Mater, 2022, 34, 2106923 doi: 10.1002/adma.202106923
[6]
Ngo T S, Le D D, Vuong N Q, et al. Systematic investigation of growth and properties of Ga2O3 films on c-plane sapphire substrates prepared by plasma-assisted molecular beam epitaxy. ECS J Solid State Sci Technol, 2022, 11, 035008 doi: 10.1149/2162-8777/ac5d65
[7]
Murakami H, Nomura K, Goto K, et al. Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl Phys Express, 2015, 8, 015503 doi: 10.7567/APEX.8.015503
[8]
Saha S, Meng L Y, Feng Z X, et al. Schottky diode characteristics on high-growth rate LPCVD β -Ga2O3 films on (010) and (001) Ga2O3 substrates. Appl Phys Lett, 2022, 120, 122106 doi: 10.1063/5.0083659
[9]
Rafique S, Han L, Neal A T, et al. Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition. Appl Phys Lett, 2016, 109, 132103. doi: 10.1063/1.4963820
[10]
Xu Y, An Z Y, Zhang L X, et al. Solar blind deep ultraviolet β-Ga2O3 photodetectors grown on sapphire by the Mist-CVD method. Opt Mater Express, 2018, 8, 2941 doi: 10.1364/OME.8.002941
[11]
Hu D Q, Zhuang S W, Ma Z Z, et al. Study on the optical properties of β-Ga2O3 films grown by MOCVD. J Mater Sci: Mater Electron, 2017, 28, 10997 doi: 10.1007/s10854-017-6882-x
[12]
Anamika S P, Sriram K, Swanand V S, et al. High responsivity in molecular beam epitaxy grown β-Ga2O3 metal semiconductor metal solar blind deep-UV photodetector. Appl Phys Lett, 2017, 110, 221107 doi: 10.1063/1.4984904
[13]
Qian L X, Wu Z H, Zhang Y Y, et al. Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide. ACS Photonics, 2017, 4, 2203 doi: 10.1021/acsphotonics.7b00359
[14]
Arora K, Goel N, Kumar M, et al. Ultrahigh performance of self-powered β-Ga2O3 thin film solar-blind photodetector grown on cost-effective Si substrate using high-temperature seed layer. ACS Photonics, 2018, 5, 2391 doi: 10.1021/acsphotonics.8b00174
[15]
Cheng Y L, Zhang C F, Xu Y, et al. Heteroepitaxial growth of β-Ga2O3 thin films on c-plane sapphire substrates with β-(Al x Ga1- x )2O3 intermediate buffer layer by mist-CVD method. Mater Today Commun, 2021, 29, 102766 doi: 10.1016/j.mtcomm.2021.102766
[16]
Zhang Y B, Zheng J, Ma P P, et al. Growth and characterization of β-Ga2O3 thin films grown on off-angled Al2O3 substrates by metal-organic chemical vapor deposition. J Semicond, 2022, 43, 092801 doi: 10.1088/1674-4926/43/9/092801
[17]
Ma P P, Zheng J, Zhang Y B, et al. Investigation on n-type (−201) β-Ga2O3 ohmic contact via Si ion implantation. Tsinghua Sci Technol, 2022, 28, 150 doi: 10.26599/TST.2021.9010039
[18]
Ma P P, Zheng J, Zhang Y B, et al. Lateral β-Ga2O3 Schottky barrier diode fabricated on (–201) single crystal substrate and its temperature-dependent current–voltage characteristics. Chin Phys B, 2022, 31, 047302 doi: 10.1088/1674-1056/ac2729
[19]
Joshi G, Chauhan Y S, Verma A. Temperature dependence of β-Ga2O3 heteroepitaxy on c-plane sapphire using low pressure chemical vapor deposition. J Alloys Compd, 2021, 883, 160799 doi: 10.1016/j.jallcom.2021.160799
[20]
Li H R, Wang Y H, Cao J, et al. Enhanced solar-blind photoresponse characteristics in β-Ga2O3 epitaxial films on large miscut sapphire substrates. J Alloys Compd, 2021, 877, 160143 doi: 10.1016/j.jallcom.2021.160143
[21]
Jiao Y J, Jiang Q, Meng J H, et al. Growth and characteristics of β-Ga2O3 thin films on sapphire (0001) by low pressure chemical vapour deposition. Vacuum, 2021, 189, 110253 doi: 10.1016/j.vacuum.2021.110253
[22]
Xu W L, Shi J C, Li Y W, et al. Study of β-Ga2O3 films hetero-epitaxially grown on off-angled sapphire substrates by halide vapor phase epitaxy. Mater Lett, 2021, 289, 129411 doi: 10.1016/j.matlet.2021.129411
[23]
Ma Y J, Tang W B, Chen T W, et al. Effect of off-axis substrate angles on β-Ga2O3 thin films and solar-blind ultraviolet photodetectors grown on sapphire by MOCVD. Mater Sci Semicond Process, 2021, 131, 105856 doi: 10.1016/j.mssp.2021.105856
[24]
Qin Y A, Li L H, Zhao X L, et al. Metal–semiconductor–metal ε-Ga2O3 solar-blind photodetectors with a record-high responsivity rejection ratio and their gain mechanism. ACS Photonics, 2020, 7, 812 doi: 10.1021/acsphotonics.9b01727
[25]
Kim S, Kim J. Highly selective ozone-treated β-Ga2O3 solar-blind deep-UV photodetectors. Appl Phys Lett, 2020, 117, 261101 doi: 10.1063/5.0030400
[26]
Li Y Q, Zhang D, Lin R C, et al. Graphene interdigital electrodes for improving sensitivity in a Ga2O3: Zn deep-ultraviolet photoconductive detector. ACS Appl Mater Interfaces, 2019, 11, 1013 doi: 10.1021/acsami.8b14380
[27]
Zhang D, Zheng W, Lin R C, et al. High quality β-Ga2O3 film grown with N2O for high sensitivity solar-blind-ultraviolet photodetector with fast response speed. J Alloys Compd, 2018, 735, 150 doi: 10.1016/j.jallcom.2017.11.037
[28]
Kong W Y, Wu G A, Wang K Y, et al. Graphene- β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv Mater, 2016, 28, 10725 doi: 10.1002/adma.201604049
[29]
Qian L X, Liu H Y, Zhang H F, et al. Simultaneously improved sensitivity and response speed of β-Ga2O3 solar-blind photodetector via localized tuning of oxygen deficiency. Appl Phys Lett, 2019, 114, 113506 doi: 10.1063/1.5088665
[30]
Wang Y H, Cui W J, Yu J E, et al. One-step growth of amorphous/crystalline Ga2O3 phase junctions for high-performance solar-blind photodetection. ACS Appl Mater Interfaces, 2019, 11, 45922 doi: 10.1021/acsami.9b17409
[31]
Zhou H T, Cong L J, Ma J G, et al. High-performance high-temperature solar-blind photodetector based on polycrystalline Ga2O3 film. J Alloys Compd, 2020, 847, 156536 doi: 10.1016/j.jallcom.2020.156536
[32]
Oh S, Kim C K, Kim J. High responsivity β-Ga2O3 metal–semiconductor–metal solar-blind photodetectors with ultraviolet transparent graphene electrodes. ACS Photonics, 2018, 5, 1123 doi: 10.1021/acsphotonics.7b01486
[33]
Chen Y C, Lu Y J, Liu Q, et al. Ga2O3 photodetector arrays for solar-blind imaging. J Mater Chem C, 2019, 7, 2557 doi: 10.1039/C8TC05251D
[34]
Li M Q, Yang N, Wang G G, et al. Highly preferred orientation of Ga2O3 films sputtered on SiC substrates for deep UV photodetector application. Appl Surf Sci, 2019, 471, 694 doi: 10.1016/j.apsusc.2018.12.045
[35]
Li Y N, Li Y Q, Ji Y, et al. Sol-gel preparation of Sn doped gallium oxide films for application in solar-blind ultraviolet photodetectors. J Mater Sci, 2022, 57, 1186 doi: 10.1007/s10853-021-06680-w
[36]
Hu G C, Shan C X, Zhang N, et al. High gain Ga2O3 solar-blind photodetectors realized via a carrier multiplication process. Opt Express, 2015, 23, 13554 doi: 10.1364/OE.23.013554
[37]
Qian L X, Zhang H F, Lai P T, et al. High-sensitivity β-Ga2O3 solar-blind photodetector on high-temperature pretreated c-plane sapphire substrate. Opt Mater Express, 2017, 7, 3643 doi: 10.1364/OME.7.003643
[38]
Hou X H, Sun H D, Long S B, et al. Ultrahigh-performance solar-blind photodetector based on α-phase- dominated Ga2O3 film with record low dark current of 81 fA. IEEE Electron Device Lett, 2019, 40, 1483 doi: 10.1109/LED.2019.2932140
[39]
Pintor-Monroy M I, Murillo-Borjas B L, Quevedo-Lopez M A. Nanocrystalline and polycrystalline β-Ga2O3 thin films for deep ultraviolet detectors. ACS Appl Electron Mater, 2020, 2, 3358 doi: 10.1021/acsaelm.0c00643
[40]
Lin R C, Zheng W, Zhang D, et al. High-performance graphene/β-Ga2O3 heterojunction deep-ultraviolet photodetector with hot-electron excited carrier multiplication. ACS Appl Mater Interfaces, 2018, 10, 22419 doi: 10.1021/acsami.8b05336
[41]
Liu Z, Wang X A, Liu Y Y, et al. A high-performance ultraviolet solar-blind photodetector based on a β-Ga2O3 Schottky photodiode. J Mater Chem C, 2019, 7, 13920 doi: 10.1039/C9TC04912F
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 666 Times PDF downloads: 106 Times Cited by: 0 Times

    History

    Received: 12 September 2023 Revised: 31 October 2023 Online: Accepted Manuscript: 29 November 2023Uncorrected proof: 08 December 2023Published: 10 February 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Peipei Ma, Jun Zheng, Xiangquan Liu, Zhi Liu, Yuhua Zuo, Buwen Cheng. Two-step growth of β-Ga2O3 on c-plane sapphire using MOCVD for solar-blind photodetector[J]. Journal of Semiconductors, 2024, 45(2): 022502. doi: 10.1088/1674-4926/45/2/022502 P P Ma, J Zheng, X Q Liu, Z Liu, Y H Zuo, B W Cheng. Two-step growth of β-Ga2O3 on c-plane sapphire using MOCVD for solar-blind photodetector[J]. J. Semicond, 2024, 45(2): 022502. doi: 10.1088/1674-4926/45/2/022502Export: BibTex EndNote
      Citation:
      Peipei Ma, Jun Zheng, Xiangquan Liu, Zhi Liu, Yuhua Zuo, Buwen Cheng. Two-step growth of β-Ga2O3 on c-plane sapphire using MOCVD for solar-blind photodetector[J]. Journal of Semiconductors, 2024, 45(2): 022502. doi: 10.1088/1674-4926/45/2/022502

      P P Ma, J Zheng, X Q Liu, Z Liu, Y H Zuo, B W Cheng. Two-step growth of β-Ga2O3 on c-plane sapphire using MOCVD for solar-blind photodetector[J]. J. Semicond, 2024, 45(2): 022502. doi: 10.1088/1674-4926/45/2/022502
      Export: BibTex EndNote

      Two-step growth of β-Ga2O3 on c-plane sapphire using MOCVD for solar-blind photodetector

      doi: 10.1088/1674-4926/45/2/022502
      More Information
      • Author Bio:

        Peipei Ma Peipei Ma received the BS degree from the Hebei University of Technology, China in 2013, and the PhD degree in microelectronics and optoelectronics from the Institute of Semiconductors, Chinese Academy of Sciences, China in 2022. Her research interests include epitaxial growth and device fabrication of gallium oxide

        Jun Zheng Jun Zheng received the BSci degree from Beijing Institue of Technology, China in 2006 and PhD degree in physical electronics from Graduated University of Chinese Academy of Sciences, China in 2011. He is now an associate researcher in Institute of Semiconductors, Chinese Academy of Sciences, China. His research interest is silicon photonics and gallium oxide devices

      • Corresponding author: zhengjun@semi.ac.cn
      • Received Date: 2023-09-12
      • Revised Date: 2023-10-31
      • Available Online: 2023-11-29

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return