ARTICLES

Anomalous bond lengthening in compressed magnetic doped semiconductor Ba(Zn0.95Mn0.05)2As2

Fei Sun1, 2, 3, Yi Peng1, 2, Guoqiang Zhao1, Xiancheng Wang1, Zheng Deng1, 2, and Changqing Jin1, 2,

+ Author Affiliations

 Corresponding author: Zheng Deng, dengzheng@iphy.ac.cn; Changqing Jin, Jin@iphy.ac.cn

PDF

Turn off MathJax

Abstract: Applying pressure has been evidenced as an effective method to control the properties of semiconductors, owing to its capability to modify the band configuration around Fermi energy. Correspondingly, structural evolutions under external pressures are required to analyze the mechanisms. Herein high-pressure structure of a magnetic doped semiconductor Ba(Zn0.95Mn0.05)2As2 is studied with combination of in-situ synchrotron X-ray diffractions and diamond anvil cells. The materials become ferromagnetic with Curie temperature of 105 K after further 20% K doping. The title material undergoes an isostructural phase transition at around 19 GPa. Below the transition pressure, it is remarkable to find lengthening of Zn/Mn−As bond within Zn/MnAs layers, since chemical bonds are generally shortened with applying pressures. Accompanied with the bond stretch, interlayer As−As distances become shorter and the As−As dimers form after the phase transition. With further compression, Zn/Mn−As bond becomes shortened due to the recovery of isotropic compression on the Zn/MnAs layers.

Key words: magnetic semiconductorhigh-pressurein-situ X-ray diffractionphase transition



[1]
Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287, 1019 doi: 10.1126/science.287.5455.1019
[2]
Furdyna J K. Diluted magnetic semiconductors. J Appl Phys, 1988, 64, R29 doi: 10.1063/1.341700
[3]
Dietl T, Ohno H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev Mod Phys, 2014, 86, 187 doi: 10.1103/RevModPhys.86.187
[4]
Hirohata A, Sukegawa H, Yanagihara H, et al. Roadmap for emerging materials for spintronic device applications. IEEE Trans Magn, 2015, 51, 0800511 doi: 10.1109/TMAG.2015.2457393
[5]
Zhang J, Wei Z M. Preface to special topic on twisted van der waals heterostructures. J Semicond, 2023, 44, 010101 doi: 10.1088/1674-4926/44/1/010101
[6]
Wei D H. The room temperature ferromagnetism in highly strained two-dimensional magnetic semiconductors. J Semicond, 2023, 44, 040401 doi: 10.1088/1674-4926/44/4/040401
[7]
Chen L, Yang X, Yang F H, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584 doi: 10.1021/nl201187m
[8]
Wei Q Q, Wang H L, Zhao X P, et al. Electron mobility anisotropy in (Al, Ga)Sb/InAs two-dimensional electron gases epitaxied on GaAs (001) substrates. J Semicond, 2022, 43, 072101 doi: 10.1088/1674-4926/43/7/072101
[9]
Deng Z, Wang X, Wang M Q, et al. Giant exchange-bias-like effect at low cooling fields induced by pinned magnetic domains in Y2NiIrO6 double perovskite. Adv Mater, 2023, 35, 2209759 doi: 10.1002/adma.202209759
[10]
Minomura S, Drickamer H G. Pressure induced phase transitions in silicon, germanium and some III-V compounds. J Phys Chem Solids, 1962, 23, 451 doi: 10.1016/0022-3697(62)90085-9
[11]
Ono S, Kikegawa T. Phase transformation of GaAs at high pressures and temperatures. J Phys Chem Solids, 2018, 113, 1 doi: 10.1016/j.jpcs.2017.10.005
[12]
Grivickas P, McCluskey M D, Gupta Y M. Transformation of GaAs into an indirect L-band-gap semiconductor under uniaxial strain. Phys Rev B, 2009, 80, 073201 doi: 10.1103/PhysRevB.80.073201
[13]
Lin K L, Lin C M, Lin Y S, et al. Structural properties of pressure-induced structural phase transition of Si-doped GaAs by angular-dispersive X-ray diffraction. Appl Phys A, 2016, 122, doi: 10.1007/s00339-016-9660-3
[14]
Csontos M, Mihaly G, Janko B, et al. Pressure-induced ferromagnetism in (In, Mn)Sb dilute magnetic semiconductor. Nature Mater, 2005, 4, 447 doi: 10.1038/nmat1388
[15]
Gryglas-Borysiewicz M, Kwiatkowski A, Baj M, et al. Hydrostatic pressure study of the paramagnetic-ferromagnetic phase transition in (Ga, Mn)As. Phys Rev B, 2010, 82, 153204 doi: 10.1103/PhysRevB.82.153204
[16]
Gonzalez Szwacki N, Majewski J A, Dietl T. (Ga, Mn)As under pressure: A first-principles investigation. Phys Rev B, 2015, 91, 184409 doi: 10.1103/PhysRevB.91.184409
[17]
Sun F, Li N N, Chen B J, et al. Pressure effect on the magnetism of the diluted magnetic semiconductor (Ba1-xKx)(Zn1-yMny)2As2 with independent spin and charge doping. Phys Rev B, 2016, 93, 224403 doi: 10.1103/PhysRevB.93.224403
[18]
Sun F, Zhao G Q, Escanhoela C A, et al. Hole doping and pressure effects on the II-II-V-based diluted magnetic semiconductor (Ba1-xKx)(Zn1-yMny)2As2. Phys Rev B, 2017, 95, 094412 doi: 10.1103/PhysRevB.95.094412
[19]
Deng Z, Jin C Q, Liu Q Q, et al. Li(Zn, Mn)As as a new generation ferromagnet based on a I-II-V semiconductor. Nat Commun, 2011, 2, 422 doi: 10.1038/ncomms1425
[20]
Zhao K, Deng Z, Wang X C, et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the '122' iron-based superconductors. Nat Commun, 2013, 4, 1442 doi: 10.1038/ncomms2447
[21]
Zhao K, Chen B J, Zhao G Q, et al. Ferromagnetism at 230 K in (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 diluted magnetic semiconductor. Chin Sci Bull, 2014, 59, 2524 doi: 10.1007/s11434-014-0398-z
[22]
Yu S, Zhao G Q, Peng Y, et al. A substantial increase of Curie temperature in a new type of diluted magnetic semiconductors via effects of chemical pressure. APL Mater, 2019, 7, 101119 doi: 10.1063/1.5120719
[23]
Deng Z, Kang C J, Croft M, et al. A pressure-induced inverse order-disorder transition in double perovskites. Angew Chem Int Ed, 2020, 59, 8240 doi: 10.1002/anie.202001922
[24]
Yu S, Peng Y, Zhao G Q, et al. Colossal negative magnetoresistance in spin glass Na(Zn, Mn)Sb. J Semicond, 2023, 44, 032501 doi: 10.1088/1674-4926/44/3/032501
[25]
Zhao X Q, Dong J O, Fu L C, et al. (Ba1−xNax)F(Zn1−xMnx)Sb: A novel fluoride-antimonide magnetic semiconductor with decoupled charge and spin doping. J Semicond, 2022, 43, 112501 doi: 10.1088/1674-4926/43/11/112501
[26]
Liu X Y, Riney L, Guerra J, et al. Colossal negative magnetoresistance from hopping in insulating ferromagnetic semiconductors. J Semicond, 2022, 43, 112502 doi: 10.1088/1674-4926/43/11/112502
[27]
Toby B H. EXPGUI, A graphical user interface for GSAS. J Appl Cryst, 2001, 34, 210 doi: 10.1107/S0021889801002242
[28]
Jia S, Jiramongkolchai P, Suchomel M R, et al. Ferromagnetic quantum critical point induced by dimer-breaking in SrCo2(Ge1−xPx)2. Nature Physics, 2011, 7, 207 doi: 10.1038/nphys1868
[29]
Xiao Z W, Hiramatsu H, Ueda S, et al. Narrow bandgap in β-BaZn2As2 and its chemical origins. J Am Chem Soc, 2014, 136, 14959 doi: 10.1021/ja507890u
[30]
Suzuki H, Zhao K, Shibata G, et al. Photoemission and X-ray absorption studies of the isostructural to Fe-based superconductors diluted magnetic semiconductor Ba1-xKx(Zn1-yMny)2As2. Phys Rev B, 2015, 91, 140401(R doi: 10.1103/PhysRevB.91.140401
Fig. 1.  (Color online) (a) Crystal structure of Ba(Zn0.95Mn0.05)2As2, some important parameters are marked. (b) SXRD patterns of polycrystalline Ba(Zn0.95Mn0.05)2As2 at selected pressures. (c) Enlarged patterns of Fig. 1(b) with 2θ from 11° to 15°.

Fig. 2.  (Color online) The Rietveld refinements of SXRD pattern at (a) 1.0 and (b) 43.4 GPa. (c) Lattice constants versus pressures. The blue dash line indicates the transition pressure. (d) Lattice volume versus pressures and the fitting at low and high pressures.

Fig. 3.  (Color online) The pressure dependence of (a) Zn/Mn−As bond length, (b) two As−Zn/Mn−As bond angles, and (c) interlayer As−As distance. The blue dash lines are eye-guides. (d) The scheme of Ba-, Zn/Mn- and As-layers in Ba(Zn0.95Mn0.05)2As2 lattice.

Fig. 4.  (Color online) Evolution of crystal structures of Ba(Zn0.95Mn0.05)2As2 with increasing pressures. The important parameters are marked.

Table 1.   The results of Rietveld refinements under all the pressures: the lattice parameters, Rwp and Rp.

Pressure
(GPa)
a
(Å)
c
(Å)
As
(0, 0, z)
Rwp
(%)
Rp
(%)
0 4.1240 13.5680 0.3635 2.59 1.55
1.0 4.1068 13.4615 0.3697 2.69 1.56
1.7 4.0917 13.4071 0.3703 2.72 1.61
3.7 4.0499 13.2437 0.3736 2.93 1.92
4.7 4.0302 13.16851 0.3743 2.54 1.43
5.9 4.0106 13.0854 0.3807 2.76 1.58
7.4 3.9844 12.9825 0.3983 2.98 1.81
8.8 3.9648 12.9128 0.3996 2.93 1.80
10.2 3.9449 12.8479 0.4047 2.97 1.70
12.2 3.9234 12.7547 0.4070 3.04 1.8
13.6 3.9100 12.6986 0.4087 3.07 1.79
14.9 3.8959 12.6501 0.4064 2.92 1.70
16.9 3.8774 12.5440 0.4149 3.27 1.93
18.2 3.8677 12.5036 0.4038 2.92 1.86
19.6 3.8603 12.4208 0.4076 2.74 1.80
20.4 3.8546 12.3727 0.4084 2.70 1.78
21.5 3.8488 12.3306 0.4069 2.60 1.71
22.7 3.8429 12.2556 0.4154 2.98 1.83
23.9 3.8360 12.2176 0.4064 2.83 1.67
25.1 3.8325 12.1458 0.4090 2.59 1.69
26.5 3.8294 12.0579 0.41379 2.72 1.63
28.2 3.8211 11.9818 0.4105 2.59 1.71
29.9 3.8201 11.8649 0.41130 2.69 1.66
32.0 3.8149 11.7569 0.4159 2.65 1.72
34.1 3.8148 11.6020 0.4069 2.81 1.75
35.9 3.8136 11.4903 0.4040 2.70 1.64
38.0 3.8117 11.3794 0.4084 2.35 1.55
40.1 3.8033 11.3211 0.4020 3.22 1.88
41.8 3.8023 11.2388 0.4045 3.05 1.82
43.4 3.7963 11.1814 0.4035 2.55 1.68
46.9 3.7929 11.0458 0.4027 2.43 1.63
DownLoad: CSV
[1]
Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287, 1019 doi: 10.1126/science.287.5455.1019
[2]
Furdyna J K. Diluted magnetic semiconductors. J Appl Phys, 1988, 64, R29 doi: 10.1063/1.341700
[3]
Dietl T, Ohno H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev Mod Phys, 2014, 86, 187 doi: 10.1103/RevModPhys.86.187
[4]
Hirohata A, Sukegawa H, Yanagihara H, et al. Roadmap for emerging materials for spintronic device applications. IEEE Trans Magn, 2015, 51, 0800511 doi: 10.1109/TMAG.2015.2457393
[5]
Zhang J, Wei Z M. Preface to special topic on twisted van der waals heterostructures. J Semicond, 2023, 44, 010101 doi: 10.1088/1674-4926/44/1/010101
[6]
Wei D H. The room temperature ferromagnetism in highly strained two-dimensional magnetic semiconductors. J Semicond, 2023, 44, 040401 doi: 10.1088/1674-4926/44/4/040401
[7]
Chen L, Yang X, Yang F H, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584 doi: 10.1021/nl201187m
[8]
Wei Q Q, Wang H L, Zhao X P, et al. Electron mobility anisotropy in (Al, Ga)Sb/InAs two-dimensional electron gases epitaxied on GaAs (001) substrates. J Semicond, 2022, 43, 072101 doi: 10.1088/1674-4926/43/7/072101
[9]
Deng Z, Wang X, Wang M Q, et al. Giant exchange-bias-like effect at low cooling fields induced by pinned magnetic domains in Y2NiIrO6 double perovskite. Adv Mater, 2023, 35, 2209759 doi: 10.1002/adma.202209759
[10]
Minomura S, Drickamer H G. Pressure induced phase transitions in silicon, germanium and some III-V compounds. J Phys Chem Solids, 1962, 23, 451 doi: 10.1016/0022-3697(62)90085-9
[11]
Ono S, Kikegawa T. Phase transformation of GaAs at high pressures and temperatures. J Phys Chem Solids, 2018, 113, 1 doi: 10.1016/j.jpcs.2017.10.005
[12]
Grivickas P, McCluskey M D, Gupta Y M. Transformation of GaAs into an indirect L-band-gap semiconductor under uniaxial strain. Phys Rev B, 2009, 80, 073201 doi: 10.1103/PhysRevB.80.073201
[13]
Lin K L, Lin C M, Lin Y S, et al. Structural properties of pressure-induced structural phase transition of Si-doped GaAs by angular-dispersive X-ray diffraction. Appl Phys A, 2016, 122, doi: 10.1007/s00339-016-9660-3
[14]
Csontos M, Mihaly G, Janko B, et al. Pressure-induced ferromagnetism in (In, Mn)Sb dilute magnetic semiconductor. Nature Mater, 2005, 4, 447 doi: 10.1038/nmat1388
[15]
Gryglas-Borysiewicz M, Kwiatkowski A, Baj M, et al. Hydrostatic pressure study of the paramagnetic-ferromagnetic phase transition in (Ga, Mn)As. Phys Rev B, 2010, 82, 153204 doi: 10.1103/PhysRevB.82.153204
[16]
Gonzalez Szwacki N, Majewski J A, Dietl T. (Ga, Mn)As under pressure: A first-principles investigation. Phys Rev B, 2015, 91, 184409 doi: 10.1103/PhysRevB.91.184409
[17]
Sun F, Li N N, Chen B J, et al. Pressure effect on the magnetism of the diluted magnetic semiconductor (Ba1-xKx)(Zn1-yMny)2As2 with independent spin and charge doping. Phys Rev B, 2016, 93, 224403 doi: 10.1103/PhysRevB.93.224403
[18]
Sun F, Zhao G Q, Escanhoela C A, et al. Hole doping and pressure effects on the II-II-V-based diluted magnetic semiconductor (Ba1-xKx)(Zn1-yMny)2As2. Phys Rev B, 2017, 95, 094412 doi: 10.1103/PhysRevB.95.094412
[19]
Deng Z, Jin C Q, Liu Q Q, et al. Li(Zn, Mn)As as a new generation ferromagnet based on a I-II-V semiconductor. Nat Commun, 2011, 2, 422 doi: 10.1038/ncomms1425
[20]
Zhao K, Deng Z, Wang X C, et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the '122' iron-based superconductors. Nat Commun, 2013, 4, 1442 doi: 10.1038/ncomms2447
[21]
Zhao K, Chen B J, Zhao G Q, et al. Ferromagnetism at 230 K in (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 diluted magnetic semiconductor. Chin Sci Bull, 2014, 59, 2524 doi: 10.1007/s11434-014-0398-z
[22]
Yu S, Zhao G Q, Peng Y, et al. A substantial increase of Curie temperature in a new type of diluted magnetic semiconductors via effects of chemical pressure. APL Mater, 2019, 7, 101119 doi: 10.1063/1.5120719
[23]
Deng Z, Kang C J, Croft M, et al. A pressure-induced inverse order-disorder transition in double perovskites. Angew Chem Int Ed, 2020, 59, 8240 doi: 10.1002/anie.202001922
[24]
Yu S, Peng Y, Zhao G Q, et al. Colossal negative magnetoresistance in spin glass Na(Zn, Mn)Sb. J Semicond, 2023, 44, 032501 doi: 10.1088/1674-4926/44/3/032501
[25]
Zhao X Q, Dong J O, Fu L C, et al. (Ba1−xNax)F(Zn1−xMnx)Sb: A novel fluoride-antimonide magnetic semiconductor with decoupled charge and spin doping. J Semicond, 2022, 43, 112501 doi: 10.1088/1674-4926/43/11/112501
[26]
Liu X Y, Riney L, Guerra J, et al. Colossal negative magnetoresistance from hopping in insulating ferromagnetic semiconductors. J Semicond, 2022, 43, 112502 doi: 10.1088/1674-4926/43/11/112502
[27]
Toby B H. EXPGUI, A graphical user interface for GSAS. J Appl Cryst, 2001, 34, 210 doi: 10.1107/S0021889801002242
[28]
Jia S, Jiramongkolchai P, Suchomel M R, et al. Ferromagnetic quantum critical point induced by dimer-breaking in SrCo2(Ge1−xPx)2. Nature Physics, 2011, 7, 207 doi: 10.1038/nphys1868
[29]
Xiao Z W, Hiramatsu H, Ueda S, et al. Narrow bandgap in β-BaZn2As2 and its chemical origins. J Am Chem Soc, 2014, 136, 14959 doi: 10.1021/ja507890u
[30]
Suzuki H, Zhao K, Shibata G, et al. Photoemission and X-ray absorption studies of the isostructural to Fe-based superconductors diluted magnetic semiconductor Ba1-xKx(Zn1-yMny)2As2. Phys Rev B, 2015, 91, 140401(R doi: 10.1103/PhysRevB.91.140401
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 210 Times PDF downloads: 14 Times Cited by: 0 Times

    History

    Received: 21 November 2023 Revised: 13 December 2023 Online: Accepted Manuscript: 02 January 2024Uncorrected proof: 08 January 2024Published: 10 April 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Fei Sun, Yi Peng, Guoqiang Zhao, Xiancheng Wang, Zheng Deng, Changqing Jin. Anomalous bond lengthening in compressed magnetic doped semiconductor Ba(Zn0.95Mn0.05)2As2[J]. Journal of Semiconductors, 2024, 45(4): 042101. doi: 10.1088/1674-4926/45/4/042101 F Sun, Y Peng, G Q Zhao, X C Wang, Z Deng, C Q Jin. Anomalous bond lengthening in compressed magnetic doped semiconductor Ba(Zn0.95Mn0.05)2As2[J]. J. Semicond, 2024, 45(4): 042101. doi: 10.1088/1674-4926/45/4/042101Export: BibTex EndNote
      Citation:
      Fei Sun, Yi Peng, Guoqiang Zhao, Xiancheng Wang, Zheng Deng, Changqing Jin. Anomalous bond lengthening in compressed magnetic doped semiconductor Ba(Zn0.95Mn0.05)2As2[J]. Journal of Semiconductors, 2024, 45(4): 042101. doi: 10.1088/1674-4926/45/4/042101

      F Sun, Y Peng, G Q Zhao, X C Wang, Z Deng, C Q Jin. Anomalous bond lengthening in compressed magnetic doped semiconductor Ba(Zn0.95Mn0.05)2As2[J]. J. Semicond, 2024, 45(4): 042101. doi: 10.1088/1674-4926/45/4/042101
      Export: BibTex EndNote

      Anomalous bond lengthening in compressed magnetic doped semiconductor Ba(Zn0.95Mn0.05)2As2

      doi: 10.1088/1674-4926/45/4/042101
      More Information
      • Author Bio:

        Fei Sun Fei Sun received her Ph.D degree from Institute of Physics, Chinese Academy of Sciences in 2017. Since 2011, she has been working in Prof. Changqing Jin's group under the supervision of Associate Professor Zheng Deng and Professor Changqing Jin, with research focusing on magnetic semiconductors. Now she works at Center for High Pressure Science & Technology Advanced Research

        Zheng Deng Zheng Deng received his Ph.D degree from Institute of Physics, Chinese Academy of Sciences in 2012. He worked as a postdoc in the Department of Chemistry in Rutgers University from January 2013 to January 2015. Since then, he has been working as an associate professor at IOPCAS. His research interests include magnetic semiconductors, superconductors and emergent materials under extreme conditions

        Changqing Jin Changqing Jin is currently a professor at Institute of Physics, Chinese Academy of Sciences. He received his Ph.D. degree from IOPCAS in 1991. His is a fellow of American Physical Society, a fellow of American Association for the Advancement of Science, and a fellow of the Institute of Physics (UK). His research group focuses on new Quantum matters by design using extreme conditions, and effects of pressures on novel emergent phenomena

      • Corresponding author: dengzheng@iphy.ac.cnJin@iphy.ac.cn
      • Received Date: 2023-11-21
      • Revised Date: 2023-12-13
      • Available Online: 2024-01-02

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return