ARTICLES

Effect of annealing on the electrical performance of N-polarity GaN Schottky barrier diodes

Nuo Xu, Gaoqiang Deng, Haotian Ma, Shixu Yang, Yunfei Niu, Jiaqi Yu, Yusen Wang, Jingkai Zhao and Yuantao Zhang

+ Author Affiliations

 Corresponding author: Gaoqiang Deng, denggq@jlu.edu.cn; Yuantao Zhang, zhangyt@jlu.edu.cn

PDF

Turn off MathJax

Abstract: A nitrogen-polarity (N-polarity) GaN-based high electron mobility transistor (HEMT) shows great potential for high-frequency solid-state power amplifier applications because its two-dimensional electron gas (2DEG) density and mobility are minimally affected by device scaling. However, the Schottky barrier height (SBH) of N-polarity GaN is low. This leads to a large gate leakage in N-polarity GaN-based HEMTs. In this work, we investigate the effect of annealing on the electrical characteristics of N-polarity GaN-based Schottky barrier diodes (SBDs) with Ni/Au electrodes. Our results show that the annealing time and temperature have a large influence on the electrical properties of N-polarity GaN SBDs. Compared to the N-polarity SBD without annealing, the SBH and rectification ratio at ±5 V of the SBD are increased from 0.51 eV and 30 to 0.77 eV and 7700, respectively, and the ideal factor of the SBD is decreased from 1.66 to 1.54 after an optimized annealing process. Our analysis results suggest that the improvement of the electrical properties of SBDs after annealing is mainly due to the reduction of the interface state density between Schottky contact metals and N-polarity GaN and the increase of barrier height for the electron emission from the trap state at low reverse bias.

Key words: nitrogen polarityGaNSchottky barrier diodesannealinginterface state



[1]
Wong M H, Rajan S, Chu R M, et al. N-face high electron mobility transistors with a GaN-spacer. Phys Status Solidi A, 2007, 204, 2049 doi: 10.1002/pssa.200674879
[2]
Mohanty S, Khan K, Ahmadi E. N-polar GaN: Epitaxy, properties, and device applications. Prog Quant Electron, 2023, 87, 100450 doi: 10.1016/j.pquantelec.2022.100450
[3]
Mishra U K, Singh J. Semiconductor device physics and design. New York: Springer-Verlag, 2008
[4]
Wong M H, Keller S, Dasgupta N S, et al. N-polar GaN epitaxy and high electron mobility transistors. Semicond Sci Technol, 2013, 28, 074009 doi: 10.1088/0268-1242/28/7/074009
[5]
Lu J, Zheng X, Guidry M, et al. Engineering the (In, Al, Ga)N back-barrier to achieve high channel-conductivity for extremely scaled channel-thicknesses in N-polar GaN high-electron-mobility-transistors. Appl Phys Lett, 2014, 104, 092107 doi: 10.1063/1.4867508
[6]
Diez S, Mohanty S, Kurdak C, et al. Record high electron mobility and low sheet resistance on scaled-channel N-polar GaN/AlN heterostructures grown on on-axis N-polar GaN substrates by plasma-assisted molecular beam epitaxy. Appl Phys Lett, 2020, 117, 042102 doi: 10.1063/5.0014460
[7]
Wong M H, Pei Y, Palacios T, et al. Low nonalloyed Ohmic contact resistance to nitride high electron mobility transistors using N-face growth. Appl Phys Lett, 2007, 91, 232103 doi: 10.1063/1.2820381
[8]
Rajan S, Chini A, Wong M H, et al. N-polar GaN/AlGaN/GaN high electron mobility transistors. J Appl Phys, 2007, 102, 044501 doi: 10.1063/1.2769950
[9]
Brown D F, Williams A, Shinohara K, et al. W-band power performance of AlGaN/GaN DHFETs with regrown n GaN ohmic contacts by MBE. International Electron Devices Meeting, 2011, 19.3. 1 doi: 10.1109/IEDM.2011.6131584
[10]
Romanczyk B, Wienecke S, Guidry M, et al. Demonstration of constant 8 W/mm power density at 10, 30, and 94 GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs. IEEE Trans Electron Devices, 2018, 65, 45 doi: 10.1109/TED.2017.2770087
[11]
Liu Y, Kauser M Z, Nathan M I, et al. Effects of hydrostatic and uniaxial stress on the Schottky barrier heights of Ga-polarity and N-polarity n-GaN. Appl Phys Lett, 2004, 84, 2112 doi: 10.1063/1.1689392
[12]
Downey B P, Meyer D J, Katzer D S, et al. Electrical characterization of Schottky contacts to N-polar GaN. Solid State Electron, 2013, 86, 17 doi: 10.1016/j.sse.2013.04.002
[13]
Suemitsu T, Makabe I. Effective Schottky barrier height model for N-polar and Ga-polar GaN by polarization-induced surface charges with finite thickness. Phys Status Solidi B, 2020, 257, 1900528 doi: 10.1002/pssb.201900528
[14]
Aoki T, Tanikawa T, Katayama R, et al. Electrical characteristics of N-polar ( $ {000}\bar{{1}} $) p-type GaN Schottky contacts. Jpn J Appl Phys, 2016, 55, 04EJ09 doi: 10.7567/JJAP.55.04EJ09
[15]
Jang H W, Lee J H, Lee J L. Characterization of band bendings on Ga-face and N-face GaN films grown by metalorganic chemical-vapor deposition. Appl Phys Lett, 2002, 80, 3955 doi: 10.1063/1.1481782
[16]
Sun Q, Cho Y S, Lee I H, et al. Nitrogen-polar GaN growth evolution on c-plane sapphire. Appl Phys Lett, 2008, 93, 131912 doi: 10.1063/1.2993333
[17]
Fichtenbaum N A, Mates T E, Keller S, et al. Impurity incorporation in heteroepitaxial N-face and Ga-face GaN films grown by metalorganic chemical vapor deposition. J Cryst Growth, 2008, 310, 1124 doi: 10.1016/j.jcrysgro.2007.12.051
[18]
Khachariya D, Szymanski D, Breckenridge M H, et al. On the characteristics of N-polar GaN Schottky barrier contacts with LPCVD SiN interlayers. Appl Phys Lett, 2021, 118, 122103 doi: 10.1063/5.0039888
[19]
Khachariya D, Szymanski D, Reddy P, et al. Schottky contacts to N-polar GaN with SiN interlayer for elevated temperature operation. Appl Phys Lett, 2022, 120, 172109 doi: 10.1063/5.0083588
[20]
Kim K. Improved conduction in GaN Schottky junctions with HfO2 passivation layers through post-deposition annealing. Jpn J Appl Phys, 2020, 59, 030902 doi: 10.35848/1347-4065/ab71d6
[21]
Ng H M, Weimann N G, Chowdhury A. GaN nanotip Pyramids formed by anisotropic etching. J Appl Phys, 2003, 94, 650 doi: 10.1063/1.1582233
[22]
Deng G Q, Zhang Y T, Huang Z, et al. Growth of high quality N-polar n-GaN on vicinal C-face n-SiC substrates for vertical conducting devices. Vacuum, 2016, 130, 119 doi: 10.1016/j.vacuum.2016.05.006
[23]
Wang Y, Niu Y F, Yu J Q, et al. Growth of high-quality nitrogen-polar GaN film by two-step high-temperature method. Thin Solid Films, 2022, 752, 139246 doi: 10.1016/j.tsf.2022.139246
[24]
Reddy N N K, Reddy V R, Choi C J. Electrical characteristics and interfacial reactions of rapidly annealed Pt/Ru Schottky contacts on n-type GaN. Phys Status Solidi A, 2011, 208, 1670 doi: 10.1002/pssa.201026748
[25]
Chen C H, Baier S M, Arch D K, et al. A new and simple model for GaAs heterojunction FET gate characteristics. IEEE Trans Electron Devices, 1988, 35, 570 doi: 10.1109/16.2499
[26]
Drechsler M, Hofmann D M, Meyer B K, et al. Determination of the conduction band electron effective mass in hexagonal GaN. Jpn J Appl Phys, 1995, 34, L1178 doi: 10.1143/JJAP.34.L1178
[27]
Qiao D, Yu L S, Lau S S, et al. Dependence of Ni/AlGaN Schottky barrier height on Al mole fraction. J Appl Phys, 2000, 87, 801 doi: 10.1063/1.371944
[28]
Rhoderick E H, Williams R H. Metal-semiconductor contacts. 2nd ed. Claredon Press, 1988
[29]
Woo H, Lee J, Jo Y, et al. Barrier lowering and leakage current reduction in Ni-AlGaN/GaN Schottky diodes with an oxygen-treated GaN cap layer. Curr Appl Phys, 2015, 15, 1027 doi: 10.1016/j.cap.2015.06.004
[30]
Jeon J W, Park S H, Jung S Y, et al. Electrical characteristics of V/Ti/Au contacts to Ga-polar and N-polar n-GaN prepared by different methods. Electrochem Solid-State Lett, 2010, 13, H125 doi: 10.1149/1.3294501
[31]
Zhang T, Wang Y, Zhang Y N, et al. Comprehensive annealing effects on AlGaN/GaN Schottky barrier diodes with different work-function metals. IEEE Trans Electron Devices, 2021, 68, 2661 doi: 10.1109/TED.2021.3074896
[32]
Card H C, Rhoderick E H. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J Phys D:Appl Phys, 1971, 4, 1589 doi: 10.1088/0022-3727/4/10/319
[33]
Nagaraju G, Ravindranatha Reddy K, Rajagopal Reddy V. Electrical transport and current properties of rare-earth dysprosium Schottky electrode on p-type GaN at various annealing temperatures. J Semicond, 2017, 38, 114001 doi: 10.1088/1674-4926/38/11/114001
[34]
Jyothi I, Janardhanam V, Lim Y R, et al. Effect of copper phthalocyanine (CuPc) interlayer on the electrical characteristics of Au/n-GaN Schottky rectifier. Mater Sci Semicond Process, 2015, 30, 420 doi: 10.1016/j.mssp.2014.10.047
[35]
Tung R T. Electron transport of inhomogeneous Schottky barriers. Appl Phys Lett, 1991, 58, 2821 doi: 10.1063/1.104747
[36]
Han D P, Ishimoto S, Mano R, et al. Improved reverse leakage current in GaInN-based LEDs with a sputtered AlN buffer layer. IEEE Photonics Technol Lett, 2019, 31, 1971 doi: 10.1109/LPT.2019.2952106
[37]
Wang Q S, Chen J, Tang H J, et al. Anomalous capacitance in temperature and frequency characteristics of a TiW/ p-InP Schottky barrier diode. Semicond Sci Technol, 2016, 31, 065023 doi: 10.1088/0268-1242/31/6/065023
[38]
Dong C, Han X X, Li J A, et al. Impacts of growth orientation and N incorporation on the interface-states and the electrical characteristics of Cu/GaAsN Schottky barrier diodes. Phys B, 2017, 527, 52 doi: 10.1016/j.physb.2017.09.125
[39]
Turuvekere S, Karumuri N, Rahman A A, et al. Gate leakage mechanisms in AlGaN/GaN and AlInN/GaN HEMTs: Comparison and modeling. IEEE Trans Electron Devices, 2013, 60, 3157 doi: 10.1109/TED.2013.2272700
Fig. 1.  Surface SEM images of GaN film (a) before and (b) after KOH etching.

Fig. 2.  (Color online) (a) The schematic structure of N-polarity GaN-based SBD. (b) Surface OM image of a fabricated N-polarity GaN-based SBD.

Fig. 3.  (Color online) J−V curves of SBD devices with different annealing times in (a) linear scale and (b) semilog scale. (c) lnI−V curve of the SBD device with an annealing time of 60 s.

Fig. 4.  (Color online) (a) Ideal factor and SBH of SBD devices with different annealing times. (b) Rectification ratios at ±5 V of SBD devices with different annealing times.

Fig. 5.  (Color online) J−V curves of SBD devices with different annealing temperatures in (a) linear scale and (b) semilog scale.

Fig. 6.  (Color online) (a) Ideal factor and SBH of SBD devices with different annealing temperatures. (b) Rectification ratios at ±5 V of SBD devices with different annealing temperatures.

Fig. 7.  (Color online) The relationship curves between NSS and ECESS for SBD devices with different annealing (a) times and (b) temperatures. (c) CV and 1/C2V curves, (d) ln(I/ξ)−ξ0.5 curves and (e) lnI−1/T curves of the SBD devices without and with annealing at 450 ℃ for 60 s. (f) ln(I/ξ2)−ξ−1 curve of the SBD device with annealing at 450 ℃ for 60 s.

Fig. 8.  (Color online) The energy band diagrams of Schottky contact region for SBD devices (a) without annealing and (b) with annealing at 450 ℃ for 60 s.

Table 1.   Characterization of nominally undoped metal-polarity and N-polarity GaN.

Polarity FWHM
($ {0002} $)
(arcsec)
FWHM
($ {10}\bar{{1}}{2} $)
(arcsec)
ND
(cm−3)
Mobility
(cm2/(V∙s))
Metal-polarity[16] 335 558 1.23 × 1017 453
N-polarity[16] 360 572 1.49 × 1018 245
N-polarity
(This work)
131 390 1.16 × 1018 247
DownLoad: CSV

Table 2.   Physical notations used in this work and corresponding physical names.

Physical notations Physical names Physical notations Physical names Physical notations Physical names
ND Background electron concentration m* Electron effective mass of GaN ESS Energy of the interface states
I Current m0 Free electron mass IPF Leakage current of Poole−Frenkel emission
J Current density h Planck's constant Z A constant in IPF
V Voltage Ion/Ioff Rectification ratio ξ Electric field
C Capacitance NSS Density of interface state $\phi_{\mathrm{t}} $ Barrier height for the electron emission from the trap state
Von Turn-on voltage εi Dielectric constant of the thin oxide dielectric layer εsh Dielectric constant of GaN at high frequency
Is Reverse saturation current δ Thickness of the thin oxide dielectric layer Vbi Built-in voltage
q Absolute value of the electron charge ε0 Dielectric constant of vacuum IFN Leakage current of Fowler−Nordheim tunneling
n Ideal factor εs Dielectric constant of GaN $ {D} $ A constant in IFN
k Boltzmann's constant WD Space charge region width on the GaN side $\phi_{\mathrm{eFN}} $ Effective Schottky barrier height in IFN
T Temperature NC Conduction band state density of GaN EC Energy of conduction band
$\phi_{\mathrm{B}} $ Schottky barrier height n (V) Voltage-dependent ideal factor function EF Fermi level
A* Richard's constant $\phi_{\mathrm{e}} $ Effective SBH in n (V) EV Energy of valence band
DownLoad: CSV
[1]
Wong M H, Rajan S, Chu R M, et al. N-face high electron mobility transistors with a GaN-spacer. Phys Status Solidi A, 2007, 204, 2049 doi: 10.1002/pssa.200674879
[2]
Mohanty S, Khan K, Ahmadi E. N-polar GaN: Epitaxy, properties, and device applications. Prog Quant Electron, 2023, 87, 100450 doi: 10.1016/j.pquantelec.2022.100450
[3]
Mishra U K, Singh J. Semiconductor device physics and design. New York: Springer-Verlag, 2008
[4]
Wong M H, Keller S, Dasgupta N S, et al. N-polar GaN epitaxy and high electron mobility transistors. Semicond Sci Technol, 2013, 28, 074009 doi: 10.1088/0268-1242/28/7/074009
[5]
Lu J, Zheng X, Guidry M, et al. Engineering the (In, Al, Ga)N back-barrier to achieve high channel-conductivity for extremely scaled channel-thicknesses in N-polar GaN high-electron-mobility-transistors. Appl Phys Lett, 2014, 104, 092107 doi: 10.1063/1.4867508
[6]
Diez S, Mohanty S, Kurdak C, et al. Record high electron mobility and low sheet resistance on scaled-channel N-polar GaN/AlN heterostructures grown on on-axis N-polar GaN substrates by plasma-assisted molecular beam epitaxy. Appl Phys Lett, 2020, 117, 042102 doi: 10.1063/5.0014460
[7]
Wong M H, Pei Y, Palacios T, et al. Low nonalloyed Ohmic contact resistance to nitride high electron mobility transistors using N-face growth. Appl Phys Lett, 2007, 91, 232103 doi: 10.1063/1.2820381
[8]
Rajan S, Chini A, Wong M H, et al. N-polar GaN/AlGaN/GaN high electron mobility transistors. J Appl Phys, 2007, 102, 044501 doi: 10.1063/1.2769950
[9]
Brown D F, Williams A, Shinohara K, et al. W-band power performance of AlGaN/GaN DHFETs with regrown n GaN ohmic contacts by MBE. International Electron Devices Meeting, 2011, 19.3. 1 doi: 10.1109/IEDM.2011.6131584
[10]
Romanczyk B, Wienecke S, Guidry M, et al. Demonstration of constant 8 W/mm power density at 10, 30, and 94 GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs. IEEE Trans Electron Devices, 2018, 65, 45 doi: 10.1109/TED.2017.2770087
[11]
Liu Y, Kauser M Z, Nathan M I, et al. Effects of hydrostatic and uniaxial stress on the Schottky barrier heights of Ga-polarity and N-polarity n-GaN. Appl Phys Lett, 2004, 84, 2112 doi: 10.1063/1.1689392
[12]
Downey B P, Meyer D J, Katzer D S, et al. Electrical characterization of Schottky contacts to N-polar GaN. Solid State Electron, 2013, 86, 17 doi: 10.1016/j.sse.2013.04.002
[13]
Suemitsu T, Makabe I. Effective Schottky barrier height model for N-polar and Ga-polar GaN by polarization-induced surface charges with finite thickness. Phys Status Solidi B, 2020, 257, 1900528 doi: 10.1002/pssb.201900528
[14]
Aoki T, Tanikawa T, Katayama R, et al. Electrical characteristics of N-polar ( $ {000}\bar{{1}} $) p-type GaN Schottky contacts. Jpn J Appl Phys, 2016, 55, 04EJ09 doi: 10.7567/JJAP.55.04EJ09
[15]
Jang H W, Lee J H, Lee J L. Characterization of band bendings on Ga-face and N-face GaN films grown by metalorganic chemical-vapor deposition. Appl Phys Lett, 2002, 80, 3955 doi: 10.1063/1.1481782
[16]
Sun Q, Cho Y S, Lee I H, et al. Nitrogen-polar GaN growth evolution on c-plane sapphire. Appl Phys Lett, 2008, 93, 131912 doi: 10.1063/1.2993333
[17]
Fichtenbaum N A, Mates T E, Keller S, et al. Impurity incorporation in heteroepitaxial N-face and Ga-face GaN films grown by metalorganic chemical vapor deposition. J Cryst Growth, 2008, 310, 1124 doi: 10.1016/j.jcrysgro.2007.12.051
[18]
Khachariya D, Szymanski D, Breckenridge M H, et al. On the characteristics of N-polar GaN Schottky barrier contacts with LPCVD SiN interlayers. Appl Phys Lett, 2021, 118, 122103 doi: 10.1063/5.0039888
[19]
Khachariya D, Szymanski D, Reddy P, et al. Schottky contacts to N-polar GaN with SiN interlayer for elevated temperature operation. Appl Phys Lett, 2022, 120, 172109 doi: 10.1063/5.0083588
[20]
Kim K. Improved conduction in GaN Schottky junctions with HfO2 passivation layers through post-deposition annealing. Jpn J Appl Phys, 2020, 59, 030902 doi: 10.35848/1347-4065/ab71d6
[21]
Ng H M, Weimann N G, Chowdhury A. GaN nanotip Pyramids formed by anisotropic etching. J Appl Phys, 2003, 94, 650 doi: 10.1063/1.1582233
[22]
Deng G Q, Zhang Y T, Huang Z, et al. Growth of high quality N-polar n-GaN on vicinal C-face n-SiC substrates for vertical conducting devices. Vacuum, 2016, 130, 119 doi: 10.1016/j.vacuum.2016.05.006
[23]
Wang Y, Niu Y F, Yu J Q, et al. Growth of high-quality nitrogen-polar GaN film by two-step high-temperature method. Thin Solid Films, 2022, 752, 139246 doi: 10.1016/j.tsf.2022.139246
[24]
Reddy N N K, Reddy V R, Choi C J. Electrical characteristics and interfacial reactions of rapidly annealed Pt/Ru Schottky contacts on n-type GaN. Phys Status Solidi A, 2011, 208, 1670 doi: 10.1002/pssa.201026748
[25]
Chen C H, Baier S M, Arch D K, et al. A new and simple model for GaAs heterojunction FET gate characteristics. IEEE Trans Electron Devices, 1988, 35, 570 doi: 10.1109/16.2499
[26]
Drechsler M, Hofmann D M, Meyer B K, et al. Determination of the conduction band electron effective mass in hexagonal GaN. Jpn J Appl Phys, 1995, 34, L1178 doi: 10.1143/JJAP.34.L1178
[27]
Qiao D, Yu L S, Lau S S, et al. Dependence of Ni/AlGaN Schottky barrier height on Al mole fraction. J Appl Phys, 2000, 87, 801 doi: 10.1063/1.371944
[28]
Rhoderick E H, Williams R H. Metal-semiconductor contacts. 2nd ed. Claredon Press, 1988
[29]
Woo H, Lee J, Jo Y, et al. Barrier lowering and leakage current reduction in Ni-AlGaN/GaN Schottky diodes with an oxygen-treated GaN cap layer. Curr Appl Phys, 2015, 15, 1027 doi: 10.1016/j.cap.2015.06.004
[30]
Jeon J W, Park S H, Jung S Y, et al. Electrical characteristics of V/Ti/Au contacts to Ga-polar and N-polar n-GaN prepared by different methods. Electrochem Solid-State Lett, 2010, 13, H125 doi: 10.1149/1.3294501
[31]
Zhang T, Wang Y, Zhang Y N, et al. Comprehensive annealing effects on AlGaN/GaN Schottky barrier diodes with different work-function metals. IEEE Trans Electron Devices, 2021, 68, 2661 doi: 10.1109/TED.2021.3074896
[32]
Card H C, Rhoderick E H. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J Phys D:Appl Phys, 1971, 4, 1589 doi: 10.1088/0022-3727/4/10/319
[33]
Nagaraju G, Ravindranatha Reddy K, Rajagopal Reddy V. Electrical transport and current properties of rare-earth dysprosium Schottky electrode on p-type GaN at various annealing temperatures. J Semicond, 2017, 38, 114001 doi: 10.1088/1674-4926/38/11/114001
[34]
Jyothi I, Janardhanam V, Lim Y R, et al. Effect of copper phthalocyanine (CuPc) interlayer on the electrical characteristics of Au/n-GaN Schottky rectifier. Mater Sci Semicond Process, 2015, 30, 420 doi: 10.1016/j.mssp.2014.10.047
[35]
Tung R T. Electron transport of inhomogeneous Schottky barriers. Appl Phys Lett, 1991, 58, 2821 doi: 10.1063/1.104747
[36]
Han D P, Ishimoto S, Mano R, et al. Improved reverse leakage current in GaInN-based LEDs with a sputtered AlN buffer layer. IEEE Photonics Technol Lett, 2019, 31, 1971 doi: 10.1109/LPT.2019.2952106
[37]
Wang Q S, Chen J, Tang H J, et al. Anomalous capacitance in temperature and frequency characteristics of a TiW/ p-InP Schottky barrier diode. Semicond Sci Technol, 2016, 31, 065023 doi: 10.1088/0268-1242/31/6/065023
[38]
Dong C, Han X X, Li J A, et al. Impacts of growth orientation and N incorporation on the interface-states and the electrical characteristics of Cu/GaAsN Schottky barrier diodes. Phys B, 2017, 527, 52 doi: 10.1016/j.physb.2017.09.125
[39]
Turuvekere S, Karumuri N, Rahman A A, et al. Gate leakage mechanisms in AlGaN/GaN and AlInN/GaN HEMTs: Comparison and modeling. IEEE Trans Electron Devices, 2013, 60, 3157 doi: 10.1109/TED.2013.2272700
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 501 Times PDF downloads: 92 Times Cited by: 0 Times

    History

    Received: 06 September 2023 Revised: 01 December 2023 Online: Accepted Manuscript: 26 December 2023Uncorrected proof: 28 December 2023Published: 10 April 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Nuo Xu, Gaoqiang Deng, Haotian Ma, Shixu Yang, Yunfei Niu, Jiaqi Yu, Yusen Wang, Jingkai Zhao, Yuantao Zhang. Effect of annealing on the electrical performance of N-polarity GaN Schottky barrier diodes[J]. Journal of Semiconductors, 2024, 45(4): 042501. doi: 10.1088/1674-4926/45/4/042501 N Xu, G Q Deng, H T Ma, S X Yang, Y F Niu, J Q Yu, Y S Wang, J K Zhao, Y T Zhang. Effect of annealing on the electrical performance of N-polarity GaN Schottky barrier diodes[J]. J. Semicond, 2024, 45(4): 042501. doi: 10.1088/1674-4926/45/4/042501Export: BibTex EndNote
      Citation:
      Nuo Xu, Gaoqiang Deng, Haotian Ma, Shixu Yang, Yunfei Niu, Jiaqi Yu, Yusen Wang, Jingkai Zhao, Yuantao Zhang. Effect of annealing on the electrical performance of N-polarity GaN Schottky barrier diodes[J]. Journal of Semiconductors, 2024, 45(4): 042501. doi: 10.1088/1674-4926/45/4/042501

      N Xu, G Q Deng, H T Ma, S X Yang, Y F Niu, J Q Yu, Y S Wang, J K Zhao, Y T Zhang. Effect of annealing on the electrical performance of N-polarity GaN Schottky barrier diodes[J]. J. Semicond, 2024, 45(4): 042501. doi: 10.1088/1674-4926/45/4/042501
      Export: BibTex EndNote

      Effect of annealing on the electrical performance of N-polarity GaN Schottky barrier diodes

      doi: 10.1088/1674-4926/45/4/042501
      More Information
      • Author Bio:

        Nuo Xu Nuo Xu got his bachelor’s degree from Jilin University in 2021. He is currently an M.S. candidate under the supervision of Prof. Yuantao Zhang. His research focuses on nitrogen polarity GaN-based devices

        Gaoqiang Deng Gaoqiang Deng is an associate professor at College of Electronic and Engineering, Jilin University. He received a Ph.D. degree in 2019 from College of Electronic and Engineering, Jilin University. His current research mainly focuses on nitrogen-polarity group-Ⅲ nitride semiconductor materials and devices

        Yuantao Zhang Yuantao Zhang is a professor at College of Electronic and Engineering, Jilin University. He received a Ph.D. degree in 2005 from College of Electronic and Engineering, Jilin University. His current research mainly focuses on wide band gap semiconductor

      • Corresponding author: denggq@jlu.edu.cnzhangyt@jlu.edu.cn
      • Received Date: 2023-09-06
      • Revised Date: 2023-12-01
      • Available Online: 2023-12-26

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return