ARTICLES

Hybrid bonding of GaAs and Si wafers at low temperature by Ar plasma activation

Rui Huang1, , Zhiyong Wang2, Kai Wu1, Hao Xu1, Qing Wang1 and Yecai Guo1

+ Author Affiliations

 Corresponding author: Rui Huang, ruihuang@cwxu.edu.cn

PDF

Turn off MathJax

Abstract: High-quality bonding of 4-inch GaAs and Si is achieved using plasma-activated bonding technology. The influence of Ar plasma activation on surface morphology is discussed. When the annealing temperature is 300 ℃, the bonding strength reaches a maximum of 6.2 MPa. In addition, a thermal stress model for GaAs/Si wafers is established based on finite element analysis to obtain the distribution of equivalent stress and deformation variables at different temperatures. The shape variation of the wafer is directly proportional to the annealing temperature. At an annealing temperature of 400 ℃, the maximum protrusion of 4 inches GaAs/Si wafers is 3.6 mm. The interface of GaAs/Si wafers is observed to be dense and defect-free using a transmission electron microscope. The characterization of interface elements by X-ray energy dispersion spectroscopy indicates that the elements at the interface undergo mutual diffusion, which is beneficial for improving the bonding strength of the interface. There is an amorphous transition layer with a thickness of about 5 nm at the bonding interface. The preparation of Si-based GaAs heterojunctions can enrich the types of materials required for the development of integrated circuits, improve the performance of materials and devices, and promote the development of microelectronics technology.

Key words: plasma-activated bondingbonding strengththermal stress modelmutual diffusion



[1]
Atabaki A H, Moazeni S, Pavanello F, et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 2018, 556, 349 doi: 10.1038/s41586-018-0028-z
[2]
Lu Y, Alvarez A, Kao C H, et al. An electronic silicon-based memristor with a high switching uniformity. Nat Electron, 2019, 2, 66 doi: 10.1038/s41928-019-0204-7
[3]
Yoshikawa K, Kawasaki H, Yoshida W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy, 2017, 2, 17032 doi: 10.1038/nenergy.2017.32
[4]
Morimoto M, Nishida S, Shigekawa N, et al. Surface-activating-bonding-based low-resistance Si/III-V junctions. Electron Lett, 2013, 49, 830 doi: 10.1049/el.2013.1553
[5]
Theis T N, Wong H S P. The end of Moore’s law: A new beginning for information technology. Comput Sci Eng, 2017, 19, 41 doi: 10.1109/MCSE.2017.29
[6]
Huang Y Y, Zhang L Y, Jing R Y, et al. Superior piezoelectric performance with high operating temperature in bismuth ferrite-based ternary ceramics. J Mater Sci Technol, 2024, 169, 172 doi: 10.1016/j.jmst.2023.05.063
[7]
Su R X, Fu S L, Lu Z T, et al. Over GHz bandwidth SAW filter based on 32° Y-X LN/SiO2/poly-Si/Si heterostructure with multilayer electrode modulation. Appl Phys Lett, 2022, 120, 253501 doi: 10.1063/5.0092767
[8]
Bai C, Kim M. Single power-conversion active-clamped AC/DC converter employing Si/SiC hybrid switch. IEEE Trans Ind Electron, 2024, 71, 1616 doi: 10.1109/TIE.2023.3262889
[9]
Hager A, Güniat L, Morgan N, et al. The implementation of thermal and UV nanoimprint lithography for selective area epitaxy. Nanotechnology, 2023, 34, 445301
[10]
Lin T, Xie J N, Ning S H, et al. Study on the p-type ohmic contact in GaAs-based laser diode. Mater Sci Semicond Process, 2021, 124, 105622 doi: 10.1016/j.mssp.2020.105622
[11]
Yu J H, Xu M K, Liang L Y, et al. Separative extended-gate AlGaAs/GaAs HEMT biosensors based on capacitance change strategy. Appl Phys Lett, 2020, 116, 123704 doi: 10.1063/5.0001786
[12]
Kim S, Geum D M, Park M S, et al. Fabrication of high-quality GaAs-based photodetector arrays on Si. Appl Phys Lett, 2017, 110, 153505 doi: 10.1063/1.4980122
[13]
Schindler P C, Korn D, Stamatiadis C, et al. Monolithic GaAs electro-optic IQ modulator demonstrated at 150 gbit/s with 64QAM. J Light Technol, 2014, 32, 760 doi: 10.1109/JLT.2013.2278381
[14]
Shigekawa N, Kozono R, Yoon S, et al. Effects of post bonding annealing on GaAs//Si bonding interfaces and its application for sacrificial-layer-etching based multijunction solar cells. Sol Energy Mater Sol Cells, 2020, 210, 110501 doi: 10.1016/j.solmat.2020.110501
[15]
Cheng C W, Shiu K T, Li N, et al. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Nat Commun, 2013, 4, 1577 doi: 10.1038/ncomms2583
[16]
Ohno Y, Liang J B, Shigekawa N, et al. Chemical bonding at room temperature via surface activation to fabricate low-resistance GaAs/Si heterointerfaces. Appl Surf Sci, 2020, 525, 146610 doi: 10.1016/j.apsusc.2020.146610
[17]
Yamajo S, Yoon S, Liang J B, et al. Hard X-ray photoelectron spectroscopy investigation of annealing effects on buried oxide in GaAs/Si junctions by surface-activated bonding. Appl Surf Sci, 2019, 473, 627 doi: 10.1016/j.apsusc.2018.12.199
[18]
Shen Y J, Wang Y Z, Yang Y, et al. Influence of surface roughness and hydrophilicity on bonding strength of concrete-rock interface. Constr Build Mater, 2019, 213, 156 doi: 10.1016/j.conbuildmat.2019.04.078
[19]
He G R, Yang G H, Zheng W H, et al. Analysis of Si/GaAs Bonding Stresses with the Finite Element Method. J Semicond, 2006, 27, 11
[20]
Zhao Y Q, Liu W, Bao Y D, et al. Plasma-activated GaAs/Si wafer bonding with high mechanical strength and electrical conductivity. Mater Sci Semicond Process, 2022, 143, 106481 doi: 10.1016/j.mssp.2022.106481
Fig. 1.  (Color online) (a) Schematic diagram of the plasma-activated wafer; (b) GaAs and Si wafer bonding; (c) time-dependent curve of annealing temperature at an annealing temperature of 300 ℃.

Fig. 2.  (Color online) (a) Before surface activation of Si wafer; (b) after surface activation of Si wafer; (c) before surface activation of GaAs wafer; (d) after surface activation of GaAs wafer; (e) XPS survey on GaAs surface before and after Ar plasma-activation; (f) XPS survey on Si surface before and after Ar plasma-activation.

Fig. 3.  (a) Physical image of GaAs/Si bonded wafers; (b) infrared transmission imaging of GaAs/Si bonded wafers; (c) schematic diagram of a GaAs/Si bonding pair cut into 10 × 10 mm2 bonded square pieces; (d) relationship diagram of GaAs/Si bonding strength at different annealing temperatures.

Fig. 4.  (Color online) (a) SEM image of GaAs/Si bonding interface; (b) the GaAs/Si bonding interface is coated with a protective Pt layer; (c) GaAs/Si sample is thinned; (d) schematic diagram of GaAs/Si bonding interface; (e) the distribution of As element at the bonding interface; (f) the distribution of Ga element at the bonding interface; (g) the distribution of Si element at the bonding interface; (h) elemental composition of amorphous transition layer of GaAs/Si wafers.

Fig. 5.  (Color online) (a) Y-direction displacement cloud map; (b) z-direction displacement cloud map; (c) the distribution curve of equivalent stress and wafer diameter; (d) distribution curve of wafer variables and diameter; (e) analysis of electrical characteristics of GaAs/Si bonding interface at different annealing temperatures.

[1]
Atabaki A H, Moazeni S, Pavanello F, et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 2018, 556, 349 doi: 10.1038/s41586-018-0028-z
[2]
Lu Y, Alvarez A, Kao C H, et al. An electronic silicon-based memristor with a high switching uniformity. Nat Electron, 2019, 2, 66 doi: 10.1038/s41928-019-0204-7
[3]
Yoshikawa K, Kawasaki H, Yoshida W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy, 2017, 2, 17032 doi: 10.1038/nenergy.2017.32
[4]
Morimoto M, Nishida S, Shigekawa N, et al. Surface-activating-bonding-based low-resistance Si/III-V junctions. Electron Lett, 2013, 49, 830 doi: 10.1049/el.2013.1553
[5]
Theis T N, Wong H S P. The end of Moore’s law: A new beginning for information technology. Comput Sci Eng, 2017, 19, 41 doi: 10.1109/MCSE.2017.29
[6]
Huang Y Y, Zhang L Y, Jing R Y, et al. Superior piezoelectric performance with high operating temperature in bismuth ferrite-based ternary ceramics. J Mater Sci Technol, 2024, 169, 172 doi: 10.1016/j.jmst.2023.05.063
[7]
Su R X, Fu S L, Lu Z T, et al. Over GHz bandwidth SAW filter based on 32° Y-X LN/SiO2/poly-Si/Si heterostructure with multilayer electrode modulation. Appl Phys Lett, 2022, 120, 253501 doi: 10.1063/5.0092767
[8]
Bai C, Kim M. Single power-conversion active-clamped AC/DC converter employing Si/SiC hybrid switch. IEEE Trans Ind Electron, 2024, 71, 1616 doi: 10.1109/TIE.2023.3262889
[9]
Hager A, Güniat L, Morgan N, et al. The implementation of thermal and UV nanoimprint lithography for selective area epitaxy. Nanotechnology, 2023, 34, 445301
[10]
Lin T, Xie J N, Ning S H, et al. Study on the p-type ohmic contact in GaAs-based laser diode. Mater Sci Semicond Process, 2021, 124, 105622 doi: 10.1016/j.mssp.2020.105622
[11]
Yu J H, Xu M K, Liang L Y, et al. Separative extended-gate AlGaAs/GaAs HEMT biosensors based on capacitance change strategy. Appl Phys Lett, 2020, 116, 123704 doi: 10.1063/5.0001786
[12]
Kim S, Geum D M, Park M S, et al. Fabrication of high-quality GaAs-based photodetector arrays on Si. Appl Phys Lett, 2017, 110, 153505 doi: 10.1063/1.4980122
[13]
Schindler P C, Korn D, Stamatiadis C, et al. Monolithic GaAs electro-optic IQ modulator demonstrated at 150 gbit/s with 64QAM. J Light Technol, 2014, 32, 760 doi: 10.1109/JLT.2013.2278381
[14]
Shigekawa N, Kozono R, Yoon S, et al. Effects of post bonding annealing on GaAs//Si bonding interfaces and its application for sacrificial-layer-etching based multijunction solar cells. Sol Energy Mater Sol Cells, 2020, 210, 110501 doi: 10.1016/j.solmat.2020.110501
[15]
Cheng C W, Shiu K T, Li N, et al. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Nat Commun, 2013, 4, 1577 doi: 10.1038/ncomms2583
[16]
Ohno Y, Liang J B, Shigekawa N, et al. Chemical bonding at room temperature via surface activation to fabricate low-resistance GaAs/Si heterointerfaces. Appl Surf Sci, 2020, 525, 146610 doi: 10.1016/j.apsusc.2020.146610
[17]
Yamajo S, Yoon S, Liang J B, et al. Hard X-ray photoelectron spectroscopy investigation of annealing effects on buried oxide in GaAs/Si junctions by surface-activated bonding. Appl Surf Sci, 2019, 473, 627 doi: 10.1016/j.apsusc.2018.12.199
[18]
Shen Y J, Wang Y Z, Yang Y, et al. Influence of surface roughness and hydrophilicity on bonding strength of concrete-rock interface. Constr Build Mater, 2019, 213, 156 doi: 10.1016/j.conbuildmat.2019.04.078
[19]
He G R, Yang G H, Zheng W H, et al. Analysis of Si/GaAs Bonding Stresses with the Finite Element Method. J Semicond, 2006, 27, 11
[20]
Zhao Y Q, Liu W, Bao Y D, et al. Plasma-activated GaAs/Si wafer bonding with high mechanical strength and electrical conductivity. Mater Sci Semicond Process, 2022, 143, 106481 doi: 10.1016/j.mssp.2022.106481
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 553 Times PDF downloads: 41 Times Cited by: 0 Times

    History

    Received: 29 September 2023 Revised: 29 November 2023 Online: Accepted Manuscript: 02 January 2024Uncorrected proof: 03 January 2024Published: 10 April 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Rui Huang, Zhiyong Wang, Kai Wu, Hao Xu, Qing Wang, Yecai Guo. Hybrid bonding of GaAs and Si wafers at low temperature by Ar plasma activation[J]. Journal of Semiconductors, 2024, 45(4): 042701. doi: 10.1088/1674-4926/45/4/042701 R Huang, Z Y Wang, K Wu, H Xu, Q Wang, Y C Guo. Hybrid bonding of GaAs and Si wafers at low temperature by Ar plasma activation[J]. J. Semicond, 2024, 45(4): 042701. doi: 10.1088/1674-4926/45/4/042701Export: BibTex EndNote
      Citation:
      Rui Huang, Zhiyong Wang, Kai Wu, Hao Xu, Qing Wang, Yecai Guo. Hybrid bonding of GaAs and Si wafers at low temperature by Ar plasma activation[J]. Journal of Semiconductors, 2024, 45(4): 042701. doi: 10.1088/1674-4926/45/4/042701

      R Huang, Z Y Wang, K Wu, H Xu, Q Wang, Y C Guo. Hybrid bonding of GaAs and Si wafers at low temperature by Ar plasma activation[J]. J. Semicond, 2024, 45(4): 042701. doi: 10.1088/1674-4926/45/4/042701
      Export: BibTex EndNote

      Hybrid bonding of GaAs and Si wafers at low temperature by Ar plasma activation

      doi: 10.1088/1674-4926/45/4/042701
      More Information
      • Author Bio:

        Rui Huang Rui Huang received his Ph.D. degree at Beijing University of Technology. He is currently a lecturer in Wuxi University. His research mainly focuses on wafer bonding, smart-cut, semiconductor materials, additive manufacturing technologies and Silicon-based heterointegration

      • Corresponding author: ruihuang@cwxu.edu.cn
      • Received Date: 2023-09-29
      • Revised Date: 2023-11-29
      • Available Online: 2024-01-02

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return