RESEARCH HIGHLIGHTS

Organic solar cells with D18 or derivatives offer efficiency over 19%

Erming Feng1, Chujun Zhang1, Jianhui Chang1, Hengyue Li1, Liming Ding2, and Junliang Yang1,

+ Author Affiliations

 Corresponding author: Liming Ding, ding@nanoctr.cn; Junliang Yang, junliang.yang@csu.edu.cn

PDF

Turn off MathJax



[1]
Cheng P, Li G, Zhan X, et al. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat Photonics, 2018, 12, 131 doi: 10.1038/s41566-018-0104-9
[2]
Feng E, Han Y, Chang J, et al. 26.75 cm2 organic solar modules demonstrate a certified efficiency of 14.34%. J Semicond, 2022, 43, 100501 doi: 10.1088/1674-4926/43/10/100501
[3]
Bai X, Feng E, Li H, et al. Boosting the photovoltaic performance of doctor-bladed organic solar cells using a low-boiling solvent additive. Org Electron, 2023, 118, 106794 doi: 10.1016/j.orgel.2023.106794
[4]
Feng E, Zhang C, Chang J, et al. A 16.10% efficiency organic solar module with ultra-narrow interconnections fabricated via nanosecond ultraviolet laser processing. Cell Rep Phys Sci, 2024 doi: 10.1016/j.xcrp.2024.101883
[5]
Luo Y, Chen X, Xiao Z, et al. A large-bandgap copolymer donor for efficient ternary organic solar cells. Mater Chem Front, 2021, 5, 6139 doi: 10.1039/D1QM00835H
[6]
Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3, 1140 doi: 10.1016/j.joule.2019.01.004
[7]
Li C, Zhou J, Song J, et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat Energy, 2021, 6, 605 doi: 10.1038/s41560-021-00820-x
[8]
Liu Q, Jiang Y, Jin K, et al. 18% efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[9]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[10]
Tang H, Bai Y, Zhao H, et al. Interface engineering for highly efficient organic solar cells. Adv Mater, 2024, 2212236 doi: 10.1002/adma.202212236Citations:18SECTIONS
[11]
Jin K, Xiao Z, Ding L. 18.69% PCE from organic solar cells. J Semicond, 2021, 42, 060502 doi: 10.1088/1674-4926/42/6/060502
[12]
Jin K, Xiao Z, Ding L. D18, an eximious solar polymer! J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/1/010502
[13]
Li H, Huang K, Dong Y, et al. Efficient organic solar cells with the active layer fabricated from glovebox to ambient condition. Appl Phys Lett, 2020, 117, 133301 doi: 10.1063/5.0021509
[14]
Zhang G, Lin F R, Qi F, et al. Renewed prospects for organic photovoltaics. Chem Rev, 2022, 122, 14180 doi: 10.1021/acs.chemrev.1c00955
[15]
Mishra A, Sharma G D. Harnessing the structure-performance relationships in designing non-fused ring acceptors for organic solar cells. Angew Chem Int Ed, 2023, 62, e202219245 doi: 10.1002/anie.202219245
[16]
Yao H, Hou J. Recent advances in single-junction organic solar cells. Angew Chem Int Ed, 2022, 61, e202209021 doi: 10.1002/anie.202209021
[17]
Cao J, Nie G, Zhang L, et al. Star polymer donors. J Semicond, 2022, 43, 070201 doi: 10.1088/1674-4926/43/7/070201
[18]
Cao J, Yi L, Ding L. The origin and evolution of Y6 structure. J Semicond, 2022, 43, 030202 doi: 10.1088/1674-4926/43/3/030202
[19]
Meng X, Li M, Jin K, et al. A 4-arm small molecule acceptor with high photovoltaic performance. Angew Chem Int Ed, 2022, 61, e202207762 doi: 10.1002/anie.202207762
[20]
Li P, Meng X, Jin K, et al. Banana-shaped electron acceptors with an electron-rich core fragment and 3d packing capability. Carbon Energy, 2023, 5, e250 doi: 10.1002/cey2.250
[21]
Meng X, Jin K, Xiao Z, et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond, 2021, 42, 100501 doi: 10.1088/1674-4926/42/10/100501
[22]
Lu H, Liu W, Ran G, et al. High-pressure fabrication of binary organic solar cells with high molecular weight D18 yields record 19.65% efficiency. Angew Chem Int Ed, 2023, 62, e202314420 doi: 10.1002/anie.202314420
[23]
Zhu L, Zhang M, Xu J, et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat Mater, 2022, 21, 656 doi: 10.1038/s41563-022-01244-y
[24]
Tang W, Ding Z, Su Y, et al. Sequentially deposited elastomer-based ternary active layer for high-performance stretchable organic solar cells. Adv Funct Mater, 2024, 2312289 doi: 10.1002/adfm.202312289
[25]
Qin J, Zhang L, Xiao Z, et al. Over 16% efficiency from thick-film organic solar cells. Sci Bull, 2020, 65, 1979 doi: 10.1016/j.scib.2020.08.027
[26]
Zhang Y, Zou W, Zhang Y, et al. A record-breaking high efficiency facilitated by hierarchical morphology in all polymer solar cells. J Energy Chem, 2023, 87, 460 doi: 10.1016/j.jechem.2023.08.030
[27]
Wang J, Wang Y, Xian K, et al. Regulating phase separation kinetics for high-efficiency and mechanically robust all-polymer solar cells. Adv Mater, 2024, 36, 2305424 doi: 10.1002/adma.202305424
[28]
Kumar G, Chen F C. A review on recent progress in organic photovoltaic devices for indoor applications. J Phys D:Appl Phys, 2023, 56, 353001 doi: 10.1088/1361-6463/acd2e5
[29]
Suthar R, Dahiya H, Karak S, et al. Indoor organic solar cells for low-power IoT devices: Recent progress, challenges, and applications. J Mater Chem C, 2023, 11, 12486 doi: 10.1039/D3TC02570E
[30]
Tang H, Liao Z, Karuthedath S, et al. Rationale for highly efficient and outdoor-stable terpolymer solar cells. Energy Environ Sci, 2023, 16, 2056 doi: 10.1039/D3EE00350G
[31]
Sun C, Lee J W, Tan Z, et al. Regiospecific incorporation of acetylene linker in high-electron mobility dimerized acceptors for organic solar cells with high efficiency (18.8%) and long 1-Sun lifetime (>5000 h). Adv Energy Mater, 2023, 13, 2301283 doi: 10.1002/aenm.202301283
[32]
Wang Z, Peng Z, Xiao Z, et al. Thermodynamic properties and molecular packing explain performance and processing procedures of three D18: NFA organic solar cells. Adv Mater, 2020, 32, 2005386 doi: 10.1002/adma.202005386
[33]
Lu H, Ran G, Liu Y, et al. Green-solvent-processed high-performance ternary organic solar cells comprising a highly soluble and fluorescent third component. Adv Funct Mater, 2023, 33, 2301866 doi: 10.1002/adfm.202301866
[34]
Sun M, Zhang K N, Qiao J W, et al. Overcoming disordered preaggregation in liquid state for highly efficient organic solar cells printed from nonhalogenated solvents. Adv Energy Mater, 2023, 13, 2203465 doi: 10.1002/aenm.202203465
[35]
Meng L, Liang H, Song G, et al. Tandem organic solar cells with efficiency over 19% via the careful subcell design and optimization. Sci China Chem, 2023, 66, 808 doi: 10.1007/s11426-022-1479-x
[36]
Liu L, Xiao H, Jin K, et al. 4-Terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Lett, 2022, 15, 23 doi: 10.1007/s40820-022-00995-2
[37]
Liu L, Xiao Z, Zuo C, et al. Inorganic perovskite/organic tandem solar cells with efficiency over 20%. J Semicond, 2021, 42, 020501 doi: 10.1088/1674-4926/42/2/020501
[38]
Dong S, Zhang K, Xie B, et al. High-performance large-area organic solar cells enabled by sequential bilayer processing via nonhalogenated solvents. Adv Energy Mater, 2019, 9, 1802832 doi: 10.1002/aenm.201802832
[39]
Sun R, Guo J, Sun C, et al. A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. Energy Environ Sci, 2019, 12, 384 doi: 10.1039/C8EE02560F
[40]
Yang Y, Feng E, Li H, et al. Layer-by-layer slot-die coated high-efficiency organic solar cells processed using twin boiling point solvents under ambient condition. Nano Res, 2021, 14, 4236 doi: 10.1007/s12274-021-3576-8
[41]
Liu K, Jiang Y, Ran G, et al. 19.7% efficiency binary organic solar cells achieved by selective core fluorination of nonfullerene electron acceptors. Joule, 2024 doi: 10.1016/j.joule.2024.01.005
[42]
Xu X, Jing W, Meng H, et al. Sequential deposition of multicomponent bulk heterojunctions increases efficiency of organic solar cells. Adv Mater, 2023, 35, 2208997 doi: 10.1002/adma.202208997
[43]
Chen S, Zhu S, Hong L, et al. Binary organic solar cells with over 19 % efficiency and enhanced morphology stability enabled by asymmetric acceptors. Angew Chem Int Ed, 2024, e202318756 doi: 10.1002/ange.202318756
[44]
Deng M, Xu X, Duan Y, et al. Y-type non-fullerene acceptors with outer branched side chains and inner cyclohexane side chains for 19.36% efficiency polymer solar cells. Adv Mater, 2023, 35, 2210760 doi: 10.1002/adma.202210760
[45]
Chen Z, Zhu J, Yang D, et al. Isomerization strategy on a non-fullerene guest acceptor for stable organic solar cells with over 19% efficiency. Energy Environ Sci, 2023, 16, 3119 doi: 10.1039/D3EE01164J
[46]
Zhang G, Wu Q, Duan Y, et al. Simultaneously improved Jsc and Voc achieving 19.15% efficiency in ternary blend polymer solar cell containing a Y-type acceptor with thiophene based end groups. Chem Eng J, 2023, 476, 146538 doi: 10.1016/j.cej.2023.146538
[47]
Yao Z, Cao X, Bi X, et al. Complete peripheral fluorination of the small-molecule acceptor in organic solar cells yields efficiency over 19 %. Angew Chem Int Ed, 2023, 62, e202312630 doi: 10.1002/anie.202312630
[48]
Liu K, Jiang Y, Liu F, et al. Organic solar cells with over 19% efficiency enabled by a 2D-conjugated non-fullerene acceptor featuring favorable electronic and aggregation structures. Adv Mater, 2023, 35, 2300363 doi: 10.1002/adma.202300363
[49]
Lu H, Wang H, Ran G, et al. Chlorinated thiazole-based low-cost polymer donors for high efficiency binary and ternary organic solar cells. CCS Chem, 2024 doi: 10.31635/ccschem.023.202303239
[50]
Huang T, Zhang Y, Wang J, et al. Dual-donor organic solar cells with 19.13% efficiency through optimized active layer crystallization behavior. Nano Energy, 2024, 121, 109226 doi: 10.1016/j.nanoen.2023.109226
[51]
Su Y W, Tsai C E, Liao T C, et al. High-performance organic photovoltaics incorporating bulk heterojunction and p-i-n active layer structures. Sol RRL, 2024, 2300927 doi: 10.1002/solr.202300927
[52]
Wei Y, Chen Z, Lu G, et al. Binary organic solar cells breaking 19% via manipulating the vertical component distribution. Adv Mater, 2022, 34, 2204718 doi: 10.1002/adma.202204718
[53]
Chen Q, Huang H, Hu D, et al. Improving the performance of layer-by-layer processed organic solar cells via introducing a wide-bandgap dopant into the upper acceptor layer. Adv Mater, 2023, 35, 2211372 doi: 10.1002/adma.202211372
[54]
Li Q, Liao X, Sun Y, et al. Intermolecular interactions, morphology, and photovoltaic patterns in p–i–n heterojunction solar cells with fluorine-substituted organic photovoltaic materials. Small, 2024, 2308165 doi: 10.1002/smll.202308165
[55]
Kan Y, Sun Y, Ren Y, et al. Amino-functionalized graphdiyne derivative as a cathode interface layer with high thickness tolerance for highly efficient organic solar cells. Adv Mater, 2024, 2312635 doi: 10.1002/adma.202312635
[56]
Gao W, Qi F, Peng Z, et al. Achieving 19% power conversion efficiency in planar-mixed heterojunction organic solar cells using a pseudosymmetric electron acceptor. Adv Mater, 2022, 34, 2202089 doi: 10.1002/adma.202202089
[57]
Jiang K, Zhang J, Zhong C, et al. Suppressed recombination loss in organic photovoltaics adopting a planar–mixed heterojunction architecture. Nat Energy, 2022, 7, 1076 doi: 10.1038/s41560-022-01138-y
[58]
Fan B, Zhong W, Gao W, et al. Understanding the role of removable solid additives: Selective interaction contributes to vertical component distributions. Adv Mater, 2023, 35, 2302861 doi: 10.1002/adma.202302861
[59]
Liu Z, Zhang M, Zhang L, et al. Over 19.1% efficiency for sequentially spin-coated polymer solar cells by employing ternary strategy. Chem Eng J, 2023, 471, 144711 doi: 10.1016/j.cej.2023.144711
Fig. 1.  (Color online) Strategies and chemical structures for D18 and its derivatives, as well as typical acceptors. The related OSCs offer over 19% PCEs.

[1]
Cheng P, Li G, Zhan X, et al. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat Photonics, 2018, 12, 131 doi: 10.1038/s41566-018-0104-9
[2]
Feng E, Han Y, Chang J, et al. 26.75 cm2 organic solar modules demonstrate a certified efficiency of 14.34%. J Semicond, 2022, 43, 100501 doi: 10.1088/1674-4926/43/10/100501
[3]
Bai X, Feng E, Li H, et al. Boosting the photovoltaic performance of doctor-bladed organic solar cells using a low-boiling solvent additive. Org Electron, 2023, 118, 106794 doi: 10.1016/j.orgel.2023.106794
[4]
Feng E, Zhang C, Chang J, et al. A 16.10% efficiency organic solar module with ultra-narrow interconnections fabricated via nanosecond ultraviolet laser processing. Cell Rep Phys Sci, 2024 doi: 10.1016/j.xcrp.2024.101883
[5]
Luo Y, Chen X, Xiao Z, et al. A large-bandgap copolymer donor for efficient ternary organic solar cells. Mater Chem Front, 2021, 5, 6139 doi: 10.1039/D1QM00835H
[6]
Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3, 1140 doi: 10.1016/j.joule.2019.01.004
[7]
Li C, Zhou J, Song J, et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat Energy, 2021, 6, 605 doi: 10.1038/s41560-021-00820-x
[8]
Liu Q, Jiang Y, Jin K, et al. 18% efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[9]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[10]
Tang H, Bai Y, Zhao H, et al. Interface engineering for highly efficient organic solar cells. Adv Mater, 2024, 2212236 doi: 10.1002/adma.202212236Citations:18SECTIONS
[11]
Jin K, Xiao Z, Ding L. 18.69% PCE from organic solar cells. J Semicond, 2021, 42, 060502 doi: 10.1088/1674-4926/42/6/060502
[12]
Jin K, Xiao Z, Ding L. D18, an eximious solar polymer! J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/1/010502
[13]
Li H, Huang K, Dong Y, et al. Efficient organic solar cells with the active layer fabricated from glovebox to ambient condition. Appl Phys Lett, 2020, 117, 133301 doi: 10.1063/5.0021509
[14]
Zhang G, Lin F R, Qi F, et al. Renewed prospects for organic photovoltaics. Chem Rev, 2022, 122, 14180 doi: 10.1021/acs.chemrev.1c00955
[15]
Mishra A, Sharma G D. Harnessing the structure-performance relationships in designing non-fused ring acceptors for organic solar cells. Angew Chem Int Ed, 2023, 62, e202219245 doi: 10.1002/anie.202219245
[16]
Yao H, Hou J. Recent advances in single-junction organic solar cells. Angew Chem Int Ed, 2022, 61, e202209021 doi: 10.1002/anie.202209021
[17]
Cao J, Nie G, Zhang L, et al. Star polymer donors. J Semicond, 2022, 43, 070201 doi: 10.1088/1674-4926/43/7/070201
[18]
Cao J, Yi L, Ding L. The origin and evolution of Y6 structure. J Semicond, 2022, 43, 030202 doi: 10.1088/1674-4926/43/3/030202
[19]
Meng X, Li M, Jin K, et al. A 4-arm small molecule acceptor with high photovoltaic performance. Angew Chem Int Ed, 2022, 61, e202207762 doi: 10.1002/anie.202207762
[20]
Li P, Meng X, Jin K, et al. Banana-shaped electron acceptors with an electron-rich core fragment and 3d packing capability. Carbon Energy, 2023, 5, e250 doi: 10.1002/cey2.250
[21]
Meng X, Jin K, Xiao Z, et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond, 2021, 42, 100501 doi: 10.1088/1674-4926/42/10/100501
[22]
Lu H, Liu W, Ran G, et al. High-pressure fabrication of binary organic solar cells with high molecular weight D18 yields record 19.65% efficiency. Angew Chem Int Ed, 2023, 62, e202314420 doi: 10.1002/anie.202314420
[23]
Zhu L, Zhang M, Xu J, et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat Mater, 2022, 21, 656 doi: 10.1038/s41563-022-01244-y
[24]
Tang W, Ding Z, Su Y, et al. Sequentially deposited elastomer-based ternary active layer for high-performance stretchable organic solar cells. Adv Funct Mater, 2024, 2312289 doi: 10.1002/adfm.202312289
[25]
Qin J, Zhang L, Xiao Z, et al. Over 16% efficiency from thick-film organic solar cells. Sci Bull, 2020, 65, 1979 doi: 10.1016/j.scib.2020.08.027
[26]
Zhang Y, Zou W, Zhang Y, et al. A record-breaking high efficiency facilitated by hierarchical morphology in all polymer solar cells. J Energy Chem, 2023, 87, 460 doi: 10.1016/j.jechem.2023.08.030
[27]
Wang J, Wang Y, Xian K, et al. Regulating phase separation kinetics for high-efficiency and mechanically robust all-polymer solar cells. Adv Mater, 2024, 36, 2305424 doi: 10.1002/adma.202305424
[28]
Kumar G, Chen F C. A review on recent progress in organic photovoltaic devices for indoor applications. J Phys D:Appl Phys, 2023, 56, 353001 doi: 10.1088/1361-6463/acd2e5
[29]
Suthar R, Dahiya H, Karak S, et al. Indoor organic solar cells for low-power IoT devices: Recent progress, challenges, and applications. J Mater Chem C, 2023, 11, 12486 doi: 10.1039/D3TC02570E
[30]
Tang H, Liao Z, Karuthedath S, et al. Rationale for highly efficient and outdoor-stable terpolymer solar cells. Energy Environ Sci, 2023, 16, 2056 doi: 10.1039/D3EE00350G
[31]
Sun C, Lee J W, Tan Z, et al. Regiospecific incorporation of acetylene linker in high-electron mobility dimerized acceptors for organic solar cells with high efficiency (18.8%) and long 1-Sun lifetime (>5000 h). Adv Energy Mater, 2023, 13, 2301283 doi: 10.1002/aenm.202301283
[32]
Wang Z, Peng Z, Xiao Z, et al. Thermodynamic properties and molecular packing explain performance and processing procedures of three D18: NFA organic solar cells. Adv Mater, 2020, 32, 2005386 doi: 10.1002/adma.202005386
[33]
Lu H, Ran G, Liu Y, et al. Green-solvent-processed high-performance ternary organic solar cells comprising a highly soluble and fluorescent third component. Adv Funct Mater, 2023, 33, 2301866 doi: 10.1002/adfm.202301866
[34]
Sun M, Zhang K N, Qiao J W, et al. Overcoming disordered preaggregation in liquid state for highly efficient organic solar cells printed from nonhalogenated solvents. Adv Energy Mater, 2023, 13, 2203465 doi: 10.1002/aenm.202203465
[35]
Meng L, Liang H, Song G, et al. Tandem organic solar cells with efficiency over 19% via the careful subcell design and optimization. Sci China Chem, 2023, 66, 808 doi: 10.1007/s11426-022-1479-x
[36]
Liu L, Xiao H, Jin K, et al. 4-Terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Lett, 2022, 15, 23 doi: 10.1007/s40820-022-00995-2
[37]
Liu L, Xiao Z, Zuo C, et al. Inorganic perovskite/organic tandem solar cells with efficiency over 20%. J Semicond, 2021, 42, 020501 doi: 10.1088/1674-4926/42/2/020501
[38]
Dong S, Zhang K, Xie B, et al. High-performance large-area organic solar cells enabled by sequential bilayer processing via nonhalogenated solvents. Adv Energy Mater, 2019, 9, 1802832 doi: 10.1002/aenm.201802832
[39]
Sun R, Guo J, Sun C, et al. A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. Energy Environ Sci, 2019, 12, 384 doi: 10.1039/C8EE02560F
[40]
Yang Y, Feng E, Li H, et al. Layer-by-layer slot-die coated high-efficiency organic solar cells processed using twin boiling point solvents under ambient condition. Nano Res, 2021, 14, 4236 doi: 10.1007/s12274-021-3576-8
[41]
Liu K, Jiang Y, Ran G, et al. 19.7% efficiency binary organic solar cells achieved by selective core fluorination of nonfullerene electron acceptors. Joule, 2024 doi: 10.1016/j.joule.2024.01.005
[42]
Xu X, Jing W, Meng H, et al. Sequential deposition of multicomponent bulk heterojunctions increases efficiency of organic solar cells. Adv Mater, 2023, 35, 2208997 doi: 10.1002/adma.202208997
[43]
Chen S, Zhu S, Hong L, et al. Binary organic solar cells with over 19 % efficiency and enhanced morphology stability enabled by asymmetric acceptors. Angew Chem Int Ed, 2024, e202318756 doi: 10.1002/ange.202318756
[44]
Deng M, Xu X, Duan Y, et al. Y-type non-fullerene acceptors with outer branched side chains and inner cyclohexane side chains for 19.36% efficiency polymer solar cells. Adv Mater, 2023, 35, 2210760 doi: 10.1002/adma.202210760
[45]
Chen Z, Zhu J, Yang D, et al. Isomerization strategy on a non-fullerene guest acceptor for stable organic solar cells with over 19% efficiency. Energy Environ Sci, 2023, 16, 3119 doi: 10.1039/D3EE01164J
[46]
Zhang G, Wu Q, Duan Y, et al. Simultaneously improved Jsc and Voc achieving 19.15% efficiency in ternary blend polymer solar cell containing a Y-type acceptor with thiophene based end groups. Chem Eng J, 2023, 476, 146538 doi: 10.1016/j.cej.2023.146538
[47]
Yao Z, Cao X, Bi X, et al. Complete peripheral fluorination of the small-molecule acceptor in organic solar cells yields efficiency over 19 %. Angew Chem Int Ed, 2023, 62, e202312630 doi: 10.1002/anie.202312630
[48]
Liu K, Jiang Y, Liu F, et al. Organic solar cells with over 19% efficiency enabled by a 2D-conjugated non-fullerene acceptor featuring favorable electronic and aggregation structures. Adv Mater, 2023, 35, 2300363 doi: 10.1002/adma.202300363
[49]
Lu H, Wang H, Ran G, et al. Chlorinated thiazole-based low-cost polymer donors for high efficiency binary and ternary organic solar cells. CCS Chem, 2024 doi: 10.31635/ccschem.023.202303239
[50]
Huang T, Zhang Y, Wang J, et al. Dual-donor organic solar cells with 19.13% efficiency through optimized active layer crystallization behavior. Nano Energy, 2024, 121, 109226 doi: 10.1016/j.nanoen.2023.109226
[51]
Su Y W, Tsai C E, Liao T C, et al. High-performance organic photovoltaics incorporating bulk heterojunction and p-i-n active layer structures. Sol RRL, 2024, 2300927 doi: 10.1002/solr.202300927
[52]
Wei Y, Chen Z, Lu G, et al. Binary organic solar cells breaking 19% via manipulating the vertical component distribution. Adv Mater, 2022, 34, 2204718 doi: 10.1002/adma.202204718
[53]
Chen Q, Huang H, Hu D, et al. Improving the performance of layer-by-layer processed organic solar cells via introducing a wide-bandgap dopant into the upper acceptor layer. Adv Mater, 2023, 35, 2211372 doi: 10.1002/adma.202211372
[54]
Li Q, Liao X, Sun Y, et al. Intermolecular interactions, morphology, and photovoltaic patterns in p–i–n heterojunction solar cells with fluorine-substituted organic photovoltaic materials. Small, 2024, 2308165 doi: 10.1002/smll.202308165
[55]
Kan Y, Sun Y, Ren Y, et al. Amino-functionalized graphdiyne derivative as a cathode interface layer with high thickness tolerance for highly efficient organic solar cells. Adv Mater, 2024, 2312635 doi: 10.1002/adma.202312635
[56]
Gao W, Qi F, Peng Z, et al. Achieving 19% power conversion efficiency in planar-mixed heterojunction organic solar cells using a pseudosymmetric electron acceptor. Adv Mater, 2022, 34, 2202089 doi: 10.1002/adma.202202089
[57]
Jiang K, Zhang J, Zhong C, et al. Suppressed recombination loss in organic photovoltaics adopting a planar–mixed heterojunction architecture. Nat Energy, 2022, 7, 1076 doi: 10.1038/s41560-022-01138-y
[58]
Fan B, Zhong W, Gao W, et al. Understanding the role of removable solid additives: Selective interaction contributes to vertical component distributions. Adv Mater, 2023, 35, 2302861 doi: 10.1002/adma.202302861
[59]
Liu Z, Zhang M, Zhang L, et al. Over 19.1% efficiency for sequentially spin-coated polymer solar cells by employing ternary strategy. Chem Eng J, 2023, 471, 144711 doi: 10.1016/j.cej.2023.144711
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 280 Times PDF downloads: 74 Times Cited by: 0 Times

    History

    Received: 08 March 2024 Revised: Online: Accepted Manuscript: 12 March 2024Uncorrected proof: 25 March 2024Published: 10 May 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Erming Feng, Chujun Zhang, Jianhui Chang, Hengyue Li, Liming Ding, Junliang Yang. Organic solar cells with D18 or derivatives offer efficiency over 19%[J]. Journal of Semiconductors, 2024, 45(5): 050201. doi: 10.1088/1674-4926/45/5/050201 E M Feng, C J Zhang, J H Chang, H Y Li, L M Ding, J L Yang. Organic solar cells with D18 or derivatives offer efficiency over 19%[J]. J. Semicond, 2024, 45(5): 050201. doi: 10.1088/1674-4926/45/5/050201Export: BibTex EndNote
      Citation:
      Erming Feng, Chujun Zhang, Jianhui Chang, Hengyue Li, Liming Ding, Junliang Yang. Organic solar cells with D18 or derivatives offer efficiency over 19%[J]. Journal of Semiconductors, 2024, 45(5): 050201. doi: 10.1088/1674-4926/45/5/050201

      E M Feng, C J Zhang, J H Chang, H Y Li, L M Ding, J L Yang. Organic solar cells with D18 or derivatives offer efficiency over 19%[J]. J. Semicond, 2024, 45(5): 050201. doi: 10.1088/1674-4926/45/5/050201
      Export: BibTex EndNote

      Organic solar cells with D18 or derivatives offer efficiency over 19%

      doi: 10.1088/1674-4926/45/5/050201
      More Information
      • Author Bio:

        Erming Feng Erming Feng got his BS and MS from Shijiazhuang Tiedao University and Shandong Normal University, respectively. Now he is a PhD student at Central South University under the supervision of Prof. Junliang Yang. His work focuses on organic solar modules

        Liming Ding Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, and the Associate Editors for Journal of Semiconductors and DeCarbon

        Junliang Yang Junliang Yang received his PhD in 2008 from CIAC (CAS). Then he joined Tim Jones Group at the University of Warwick. In April 2011, he joined Andrew Holmes Group at the University of Melbourne and CSIRO. In 2012, he was appointed to be a Professor in School of Physics and Electronics at the Central South University. His research focuses on perovskite solar cells, organic solar cells, flexible and printed electronics

      • Corresponding author: ding@nanoctr.cnjunliang.yang@csu.edu.cn
      • Received Date: 2024-03-08
        Available Online: 2024-03-12

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return