SHORT COMMUNICATION

70 Gbps PAM-4 850-nm oxide-confined VCSEL without equalization and pre-emphasis

Anjin Liu1, 2, , Bao Tang3, Zhiyong Li1, 2 and Wanhua Zheng2, 4

+ Author Affiliations

 Corresponding author: Anjin Liu, liuanjin@semi.ac.cn

PDF

Turn off MathJax



[1]
Liu A J, Wolf P, Lott J A, et al. Vertical-cavity surface-emitting lasers for data communication and sensing. Photon Res, 2019, 7, 121 doi: 10.1364/PRJ.7.000121
[2]
Larsson A. Advances in VCSELs for communication and sensing. IEEE J Sel Top Quantum Electron, 2011, 17, 1552 doi: 10.1109/JSTQE.2011.2119469
[3]
Tatum J A, Landry G D, Gazula D, et al. VCSEL-based optical transceivers for future data center applications. 2018 Optical Fiber Communications Conference and Exposition (OFC), 2018, 1
[4]
Kuchta D M, Rylyakov A V, Doany F E, et al. A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link. IEEE Photonics Technol Lett, 2015, 27, 577 doi: 10.1109/LPT.2014.2385671
[5]
Szczerba K, Westbergh P, Karlsson M, et al. 70 Gbps 4-PAM and 56 Gbps 8-PAM using an 850 nm VCSEL. J Lightw Technol, 2015, 33, 1395 doi: 10.1109/JLT.2015.2389898
[6]
Szczerba K, Lengyel T, Karlsson M, et al. 94-Gb/s 4-PAM using an 850-nm VCSEL, pre-emphasis, and receiver equalization. IEEE Photonics Technol Lett, 2016, 28, 2519 doi: 10.1109/LPT.2016.2602008
[7]
Grabowski A, Gustavsson J S, Larsson A. Large-signal equivalent circuit for datacom VCSELs–including intensity noise. J Lightw Technol, 2022, 40, 7342 doi: 10.1109/JLT.2022.3200905
[8]
Qiu J Y, Wu D F, Wang H L, et al. Advanced single-mode 850 nm VCSELs for record NRZ and PAM4 data rate on SMF-28 fiber up to 1 km. Optical Fiber Communication Conference (OFC), 2021, Tu5C. 2
[9]
Hecht U, Ledentsov N, Chorchos L, et al. 120Gbit/s multi-mode fiber transmission realized with feed forward equalization using 28GHz 850nm VCSELs. 45th European Conference on Optical Communication (ECOC 2019), 2019, 1 doi: 10.1049/cp.2019.0819
[10]
Lavrencik J, Varughese S, Ledentsov N, et al. 168Gbps PAM-4 multimode fiber transmission through 50m using 28GHz 850nm multimode VCSELs. Proc Opt Fiber Commun Conf Exhibit (OFC), 2020, W1D. 3
[11]
Ledentsov Jr N, Chorchos L, Makarov O, et al. Narrow spectrum VCSEL development for high performance 100G transceivers and increased transmission distance over multimode fiber. Proc of SPIE, 2021, 11704, 117040P doi: 10.1117/12.2578216
[12]
Huang C Y, Wang H Y, Wu C H, et al. Comparison on OM5-MMF and OM4-MMF data links with 32-GBaud PAM-4 modulated few-mode VCSEL at 850 nm. J Lightw Technol, 2020, 38, 573 doi: 10.1109/JLT.2019.2941501
[13]
Huang C Y, Wang H Y, Peng C Y, et al. Multimode VCSEL enables 42-GBaud PAM-4 and 35-GBaud 16-QAM OFDM for 100-m OM5 MMF data link. IEEE Access, 2020, 8, 36963 doi: 10.1109/ACCESS.2020.2975127
[14]
Yang Y C, Cheng H T, Wu C H. Single-channel 106.25 Gb/s PAM-4 and 64 Gb/s NRZ transmission with a 33.4-GHz 850-nm VCSEL with low-RIN characteristics. J Lightw Technol, 2024, 42, 293 doi: 10.1109/JLT.2023.3306077
[15]
Wang J Y, Murty R, Feng Z W, et al. High speed 850nm oxide VCSEL development for 100Gb/s ethernet at Broadcom. Proc of SPIE, 2022, 12020, 1202009 doi: 10.1117/12.2607305
[16]
Aoki T, Hiiro H, Tanaka R, et al. Performance of PAM-4 VCSEL for short-reach 100 Gb/s per lane applications up to 85°C. Proc of SPIE, 2022, 12020, 120200C doi: 10.1117/12.2607702
[17]
Hoser M, Kaiser W, Quandt D, et al. Highly reliable 106 Gb/s PAM-4 850 nm multi-mode VCSEL for 800G Ethernet applications. Proc Opt Fiber Commun Conf Exhibit (OFC), 2022, Tu2D. 5
[18]
Lavrencik J, Varughese S, Thomas V A, et al. 100Gbps PAM-4 transmission over 100m OM4 and wideband fiber using 850nm VCSELs. 42nd European Conference and Exhibition on Optical Communications (ECOC), 2016, 1, 1
[19]
Zhang J, Hao C X, Zheng W H, et al. Demonstration of electrically injected vertical-cavity surface-emitting lasers with post-supported high-contrast gratings. Photon Res, 2022, 10, 1170 doi: 10.1364/PRJ.447633
[20]
Larsson A, Simpanen E, Gustavsson J S, et al. 1060 nm VCSELs for long-reach optical interconnects. Opt Fiber Technol, 2018, 44, 36 doi: 10.1016/j.yofte.2018.01.001
[21]
Haglund E, Haglund Å, Gustavsson S J, et al. Reducing the spectral width of high speed oxide confined VCSELs using an integrated mode filter. Proc of SPIE, 2012, 8276, 82760L doi: 10.1117/12.908424
[22]
Wu C H, Tan F, Feng M, et al. The effect of mode spacing on the speed of quantum-well microcavity lasers. Appl Phys Lett, 2010, 97, 091103 doi: 10.1063/1.3485048
[23]
Hao C X, Zhang J, Zheng W H, et al. Dynamics of high-contrast grating vertical-cavity surface-emitting laser with lateral optical feedback by a heterostructure interface. Opt Express, 2022, 30, 22074 doi: 10.1364/OE.457436
Fig. 1.  (Color online) (a) Cross-sectional view of the VCSEL structure. (b) Power−current−voltage curves of the VCSEL at 25 °C. (c) Spectrum at 6 mA under 24 °C. (d) Small signal response (S21) curve at 9 mA under 25 °C. (e) 35 Gbps NRZ eye diagrams of the VCSEL without pre-emphasis, filter, or equalization at 9.5 mA and 650 mV Vpp. (f) 70 Gbps (35 Gbaud) PAM-4 eye diagrams of the VCSEL without pre-emphasis, filter, or equalization at 9.5 mA and 650 mV Vpp.

Table 1.   Selected results of PAM-4 modulation 850-nm oxide-confined VCSELs.

GroupBandwidth
(GHz)
Modulation formatData rate
(Gbps)
Advanced techniquesTemperature (°C)DistanceYearRef.
CUT20PAM-470
(35 Gbaud)
Equalization25BTB2015[5]
CUT18.2
(link)
PAM-494
(47 Gbaud)
Pre-emphasis, equalization25BTB2016[6]
CUT28PAM-456
(28 Gbaud)
N/A25BTB2022[7]
UIUCN/APAM-464
(32 Gbaud)
Equalization25500 m2021[8]
TUB-VIS-WUT28PAM-4120
(60 Gbaud)
Equalization25BTB2019[9]
GIT-VIS-WUT28PAM-4168
(84 Gbaud)
Pre-emphasis, equalization, filter25BTB2020[10]
VIS-WUT30PAM-4106
(53 Gbaud)
Equalization25BTB2021[11]
NTU23PAM-464
(32 Gbaud)
Pre-emphasis25BTB2020[12]
NTU25PAM-484
(42 Gbaud)
Pre-emphasis25BTB2020[13]
NTU33PAM-4106
(53 Gbaud)
Pre-emphasis25BTB2023[14]
Broadcom~30PAM-4106
(53 Gbaud)
Pre-emphasis, equalization, filter25100 m2022[15]
Sumitomo29PAM-4106
(53 Gbaud)
Pre-emphasis, equalization, filter25100 m2022[16]
Ⅱ−Ⅵ27PAM-4106
(53 Gbaud)
Pre-emphasis, equalization, filter25BTB2022[17]
GIT-Finisar-OFS20
(link)
PAM-4100
(50 Gbaud)
Pre-emphasis, equalization, filter25105 m2016[18]
This work23.7
(link)
PAM-470
(35 Gbaud)
N/A25BTB2023
DownLoad: CSV
[1]
Liu A J, Wolf P, Lott J A, et al. Vertical-cavity surface-emitting lasers for data communication and sensing. Photon Res, 2019, 7, 121 doi: 10.1364/PRJ.7.000121
[2]
Larsson A. Advances in VCSELs for communication and sensing. IEEE J Sel Top Quantum Electron, 2011, 17, 1552 doi: 10.1109/JSTQE.2011.2119469
[3]
Tatum J A, Landry G D, Gazula D, et al. VCSEL-based optical transceivers for future data center applications. 2018 Optical Fiber Communications Conference and Exposition (OFC), 2018, 1
[4]
Kuchta D M, Rylyakov A V, Doany F E, et al. A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link. IEEE Photonics Technol Lett, 2015, 27, 577 doi: 10.1109/LPT.2014.2385671
[5]
Szczerba K, Westbergh P, Karlsson M, et al. 70 Gbps 4-PAM and 56 Gbps 8-PAM using an 850 nm VCSEL. J Lightw Technol, 2015, 33, 1395 doi: 10.1109/JLT.2015.2389898
[6]
Szczerba K, Lengyel T, Karlsson M, et al. 94-Gb/s 4-PAM using an 850-nm VCSEL, pre-emphasis, and receiver equalization. IEEE Photonics Technol Lett, 2016, 28, 2519 doi: 10.1109/LPT.2016.2602008
[7]
Grabowski A, Gustavsson J S, Larsson A. Large-signal equivalent circuit for datacom VCSELs–including intensity noise. J Lightw Technol, 2022, 40, 7342 doi: 10.1109/JLT.2022.3200905
[8]
Qiu J Y, Wu D F, Wang H L, et al. Advanced single-mode 850 nm VCSELs for record NRZ and PAM4 data rate on SMF-28 fiber up to 1 km. Optical Fiber Communication Conference (OFC), 2021, Tu5C. 2
[9]
Hecht U, Ledentsov N, Chorchos L, et al. 120Gbit/s multi-mode fiber transmission realized with feed forward equalization using 28GHz 850nm VCSELs. 45th European Conference on Optical Communication (ECOC 2019), 2019, 1 doi: 10.1049/cp.2019.0819
[10]
Lavrencik J, Varughese S, Ledentsov N, et al. 168Gbps PAM-4 multimode fiber transmission through 50m using 28GHz 850nm multimode VCSELs. Proc Opt Fiber Commun Conf Exhibit (OFC), 2020, W1D. 3
[11]
Ledentsov Jr N, Chorchos L, Makarov O, et al. Narrow spectrum VCSEL development for high performance 100G transceivers and increased transmission distance over multimode fiber. Proc of SPIE, 2021, 11704, 117040P doi: 10.1117/12.2578216
[12]
Huang C Y, Wang H Y, Wu C H, et al. Comparison on OM5-MMF and OM4-MMF data links with 32-GBaud PAM-4 modulated few-mode VCSEL at 850 nm. J Lightw Technol, 2020, 38, 573 doi: 10.1109/JLT.2019.2941501
[13]
Huang C Y, Wang H Y, Peng C Y, et al. Multimode VCSEL enables 42-GBaud PAM-4 and 35-GBaud 16-QAM OFDM for 100-m OM5 MMF data link. IEEE Access, 2020, 8, 36963 doi: 10.1109/ACCESS.2020.2975127
[14]
Yang Y C, Cheng H T, Wu C H. Single-channel 106.25 Gb/s PAM-4 and 64 Gb/s NRZ transmission with a 33.4-GHz 850-nm VCSEL with low-RIN characteristics. J Lightw Technol, 2024, 42, 293 doi: 10.1109/JLT.2023.3306077
[15]
Wang J Y, Murty R, Feng Z W, et al. High speed 850nm oxide VCSEL development for 100Gb/s ethernet at Broadcom. Proc of SPIE, 2022, 12020, 1202009 doi: 10.1117/12.2607305
[16]
Aoki T, Hiiro H, Tanaka R, et al. Performance of PAM-4 VCSEL for short-reach 100 Gb/s per lane applications up to 85°C. Proc of SPIE, 2022, 12020, 120200C doi: 10.1117/12.2607702
[17]
Hoser M, Kaiser W, Quandt D, et al. Highly reliable 106 Gb/s PAM-4 850 nm multi-mode VCSEL for 800G Ethernet applications. Proc Opt Fiber Commun Conf Exhibit (OFC), 2022, Tu2D. 5
[18]
Lavrencik J, Varughese S, Thomas V A, et al. 100Gbps PAM-4 transmission over 100m OM4 and wideband fiber using 850nm VCSELs. 42nd European Conference and Exhibition on Optical Communications (ECOC), 2016, 1, 1
[19]
Zhang J, Hao C X, Zheng W H, et al. Demonstration of electrically injected vertical-cavity surface-emitting lasers with post-supported high-contrast gratings. Photon Res, 2022, 10, 1170 doi: 10.1364/PRJ.447633
[20]
Larsson A, Simpanen E, Gustavsson J S, et al. 1060 nm VCSELs for long-reach optical interconnects. Opt Fiber Technol, 2018, 44, 36 doi: 10.1016/j.yofte.2018.01.001
[21]
Haglund E, Haglund Å, Gustavsson S J, et al. Reducing the spectral width of high speed oxide confined VCSELs using an integrated mode filter. Proc of SPIE, 2012, 8276, 82760L doi: 10.1117/12.908424
[22]
Wu C H, Tan F, Feng M, et al. The effect of mode spacing on the speed of quantum-well microcavity lasers. Appl Phys Lett, 2010, 97, 091103 doi: 10.1063/1.3485048
[23]
Hao C X, Zhang J, Zheng W H, et al. Dynamics of high-contrast grating vertical-cavity surface-emitting laser with lateral optical feedback by a heterostructure interface. Opt Express, 2022, 30, 22074 doi: 10.1364/OE.457436
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 442 Times PDF downloads: 76 Times Cited by: 0 Times

    History

    Received: 27 December 2023 Revised: 07 February 2024 Online: Accepted Manuscript: 26 February 2024Uncorrected proof: 27 February 2024Published: 10 May 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Anjin Liu, Bao Tang, Zhiyong Li, Wanhua Zheng. 70 Gbps PAM-4 850-nm oxide-confined VCSEL without equalization and pre-emphasis[J]. Journal of Semiconductors, 2024, 45(5): 050501. doi: 10.1088/1674-4926/45/5/050501 A J Liu, B Tang, Z Y Li, W H Zheng. 70 Gbps PAM-4 850-nm oxide-confined VCSEL without equalization and pre-emphasis[J]. J. Semicond, 2024, 45(5): 050501. doi: 10.1088/1674-4926/45/5/050501Export: BibTex EndNote
      Citation:
      Anjin Liu, Bao Tang, Zhiyong Li, Wanhua Zheng. 70 Gbps PAM-4 850-nm oxide-confined VCSEL without equalization and pre-emphasis[J]. Journal of Semiconductors, 2024, 45(5): 050501. doi: 10.1088/1674-4926/45/5/050501

      A J Liu, B Tang, Z Y Li, W H Zheng. 70 Gbps PAM-4 850-nm oxide-confined VCSEL without equalization and pre-emphasis[J]. J. Semicond, 2024, 45(5): 050501. doi: 10.1088/1674-4926/45/5/050501
      Export: BibTex EndNote

      70 Gbps PAM-4 850-nm oxide-confined VCSEL without equalization and pre-emphasis

      doi: 10.1088/1674-4926/45/5/050501
      More Information
      • Author Bio:

        Anjin Liu Anjin Liu received Bachelor degree in 2006 from Huazhong University of Science and Technology in China, and Ph.D. degree in 2011 from Institute of Semiconductors, Chinese Academy of Sciences (CAS). From 2012 to July of 2013, he was a Postdoc Fellow in Fraunhofer HHI in Berlin. In August of 2013, he joined in Prof. Dieter Bimberg’s group in TU Berlin with funding from Alexander von Humboldt foundation. Currently he is a professor in Institute of Semiconductors, CAS. His research interests include high-speed VCSELs, tunable MEMS-VCSEL, semiconductor lasers, and vertically integrated photonics. He has authored and coauthored 60+ papers in scientific journals and holds 19 issued U.S. and Chinese patents. He was the recipient of the Special Prize of President Scholarship for Postgraduate Students by CAS, Excellent Doctoral Dissertation Award by CAS, Alexander von Humboldt Postdoctoral Research Fellowship, and State Technological Invention Award

      • Corresponding author: liuanjin@semi.ac.cn
      • Received Date: 2023-12-27
      • Revised Date: 2024-02-07
      • Available Online: 2024-02-26

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return