ARTICLES

Pressure manipulation of ultrafast carrier dynamics in monolayer WS2

Yao Li1, Haiou Zhu1, 2 and Zongpeng Song2,

+ Author Affiliations

 Corresponding author: Zongpeng Song, songzongpeng@sztu.edu.cn

PDF

Turn off MathJax

Abstract: Two-dimensional transition metal dichalcogenides (TMDs) have intriguing physic properties and offer an exciting platform to explore many features that are important for future devices. In this work, we synthesized monolayer WS2 as an example to study the optical response with hydrostatic pressure. The Raman results show a continuous tuning of the lattice vibrations that is induced by hydrostatic pressure. We further demonstrate an efficient pressure-induced change of the band structure and carrier dynamics via transient absorption measurements. We found that two time constants can be attributed to the capture process of two kinds of defect states, with the pressure increasing from 0.55 GPa to 2.91 GPa, both of capture processes were accelerated, and there is an inflection point within the pressure range of 1.56 GPa to 1.89 GPa. Our findings provide valuable information for the design of future optoelectronic devices.

Key words: two-dimensional transition metal dichalcogenideshydrostatic pressurecarrier dynamicsband structureultrafast spectroscopy



[1]
Sharma I, Mehta B R. Enhanced charge separation at 2D MoS2/ZnS heterojunction: KPFM based study of interface photovoltage. Appl Phys Lett, 2017, 110, 061602 doi: 10.1063/1.4975779
[2]
Ross R T, Nozik A J. Efficiency of hot-carrier solar energy converters. J Appl Phys, 1982, 53, 3813 doi: 10.1063/1.331124
[3]
Liu H S, Han N N, Zhao J J. Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: From structures to electronic properties. RSC Adv, 2015, 5, 17572 doi: 10.1039/C4RA17320A
[4]
Parzinger E, Miller B, Blaschke B, et al. Photocatalytic stability of single- and few-layer MoS2. ACS Nano, 2015, 9, 11302 doi: 10.1021/acsnano.5b04979
[5]
Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7, 699 doi: 10.1038/nnano.2012.193
[6]
Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499, 419 doi: 10.1038/nature12385
[7]
Yin Z Y, Li H, Li H, et al. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6, 74 doi: 10.1021/nn2024557
[8]
Choi W, Cho M Y, Konar A, et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv Mater, 2012, 24, 5832 doi: 10.1002/adma.201201909
[9]
He Y M, Yang Y, Zhang Z H, et al. Strain-induced electronic structure changes in stacked van der Waals heterostructures. Nano Lett, 2016, 16, 3314 doi: 10.1021/acs.nanolett.6b00932
[10]
Chen M, Xia J A, Zhou J D, et al. Ordered and atomically perfect fragmentation of layered transition metal dichalcogenides via mechanical instabilities. ACS Nano, 2017, 11, 9191 doi: 10.1021/acsnano.7b04158
[11]
Nayak A P, Yuan Z, Cao B X, et al. Pressure-modulated conductivity, carrier density, and mobility of multilayered tungsten disulfide. ACS Nano, 2015, 9, 9117 doi: 10.1021/acsnano.5b03295
[12]
Zhu Z Y, Cheng Y C, Schwingenschlögl U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys Rev B, 2011, 84, 153402 doi: 10.1103/PhysRevB.84.153402
[13]
Ye Z L, Cao T, O’Brien K, et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature, 2014, 513, 214 doi: 10.1038/nature13734
[14]
Selvi E, Ma Y Z, Aksoy R, et al. High pressure X-ray diffraction study of tungsten disulfide. J Phys Chem Solids, 2006, 67, 2183 doi: 10.1016/j.jpcs.2006.05.008
[15]
Hangyo M, Nakashima S I, Mitsuishi A. Raman spectroscopic studies of MX2-type layered compounds. Ferroelectrics, 1983, 52, 151 doi: 10.1080/00150198308208248
[16]
Ramakrishna Matte H S S, Gomathi A, Manna A, et al. MoS2 and WS2 analogues of graphene. Angew Chem Int Ed, 2010, 49, 4059 doi: 10.1002/anie.201000009
[17]
Duwal S, Yoo C S. Shear-induced isostructural phase transition and metallization of layered tungsten disulfide under nonhydrostatic compression. J Phys Chem C, 2016, 120, 5101 doi: 10.1021/acs.jpcc.5b10759
[18]
Livneh T, Sterer E. Resonant Raman scattering at exciton states tuned by pressure and temperature in 2H-MoS2. Phys Rev B, 2010, 81, 195209 doi: 10.1103/PhysRevB.81.195209
[19]
Nicolle J, Machon D, Poncharal P, et al. Pressure-mediated doping in graphene. Nano Lett, 2011, 11, 3564 doi: 10.1021/nl201243c
[20]
Cheng X R, Li Y Y, Shang J M, et al. Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure. Nano Res, 2018, 11, 855 doi: 10.1007/s12274-017-1696-y
[21]
Chi Z H, Zhao X M, Zhang H D, et al. Pressure-induced metallization of molybdenum disulfide. Phys Rev Lett, 2014, 113, 036802 doi: 10.1103/PhysRevLett.113.036802
[22]
Nayak A P, Pandey T, Voiry D, et al. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide. Nano Lett, 2015, 15, 346 doi: 10.1021/nl5036397
[23]
Dou X M, Ding K, Jiang D S, et al. Tuning and identification of interband transitions in monolayer and bilayer molybdenum disulfide using hydrostatic pressure. ACS Nano, 2014, 8, 7458 doi: 10.1021/nn502717d
[24]
Li F F, Yan Y L, Han B, et al. Pressure confinement effect in MoS2 monolayers. Nanoscale, 2015, 7, 9075 doi: 10.1039/C5NR00580A
[25]
Xia J, Yan J X, Wang Z H, et al. Strong coupling and pressure engineering in WSe2–MoSe2 heterobilayers. Nat Phys, 2020, 17, 92 doi: 10.1038/s41567-020-1005-7
[26]
Wang H N, Zhang C J, Rana F. Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2. Nano Lett, 2015, 15, 339 doi: 10.1021/nl503636c
[27]
Cunningham P D, McCreary K M, Hanbicki A T, et al. Charge trapping and exciton dynamics in large-area CVD grown MoS2. J Phys Chem C, 2016, 120, 5819 doi: 10.1021/acs.jpcc.6b00647
[28]
Wang M S, Li W, Scarabelli L, et al. Plasmon-trion and plasmon-exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2. Nanoscale, 2017, 9, 13947 doi: 10.1039/C7NR03909C
[29]
Ruppert C, Chernikov A, Hill H M, et al. The role of electronic and phononic excitation in the optical response of monolayer WS2 after ultrafast excitation. Nano Lett, 2017, 17, 644 doi: 10.1021/acs.nanolett.6b03513
[30]
Li Y Z, Shi J A, Mi Y, et al. Ultrafast carrier dynamics in two-dimensional transition metal dichalcogenides. J Mater Chem C, 2019, 7, 4304 doi: 10.1039/C8TC06343E
[31]
Ahn C, Lim H. Synthesis of monolayer 2D MoS2 quantum dots and nanomesh films by inorganic molecular chemical vapor deposition for quantum confinement effect control. Bull Korean Chem Soc, 2022, 43, 1184 doi: 10.1002/bkcs.12608
[32]
Sridevi R, Pravin J C, Babu A R, et al. Investigation of quantum confinement effects on molybdenum disulfide (MoS2) based transistor using ritz Galerkin finite element technique. Silicon, 2022, 14, 2157 doi: 10.1007/s12633-021-01010-w
[33]
Trovatello C, Katsch F, Li Q Y, et al. Disentangling many-body effects in the coherent optical response of 2D semiconductors. Nano Lett, 2022, 22, 5322 doi: 10.1021/acs.nanolett.2c01309
Fig. 1.  (Color online) Experimental setup of the CVD growth of monolayer WS2 sample.

Fig. 2.  (Color online) The characterization of monolayer WS2. (a) Optical image of a monolayer WS2. (b) Schematics of Raman modes of E2g1 and A1g. (c) Raman spectra of monolayer WS2 sample. (d) PL spectra of monolayer WS2 sample. (e) AFM image of monolayer WS2 sample. (f) Height image intensity profile along the black line in (e).

Fig. 3.  (Color online) Pressure-induced Raman vibration in monolayer WS2. (a) Evolution of the Raman spectrum with pressure for monolayer WS2 sample. (b) Raman vibrations of monolayer WS2 as a function of pressure.

Fig. 4.  (Color online) (a) Evolution of the PL spectra of monolayer WS2 sample with pressures. (b) PL peaks of monolayer WS2 as a function of pressure.

Fig. 5.  (Color online) (a) Schematic of material structure and TA measurements of monolayer WS2 in the DAC. (b) Evolution of TA spectra of monolayer WS2 under pressure from 0.30 to 3.25 Gpa. (c) A exciton peaks as a function of pressures.

Fig. 6.  (Color online) The transient absorption signals of monolayer WS2 with different pressures: (a) 0.55 GPa; (b) 0.89 Gpa; (c) 1.22 Gpa; (d) 1.56 GPa; (e) 1.89 GPa; (f) 2.23 Gpa; (g) 2.56 Gpa; (h) 2.91 GPa. The red lines are fitting.

Fig. 7.  (Color online) The time constants (a) τ1 and (b) τ2 of A exciton as a function of pressure.

[1]
Sharma I, Mehta B R. Enhanced charge separation at 2D MoS2/ZnS heterojunction: KPFM based study of interface photovoltage. Appl Phys Lett, 2017, 110, 061602 doi: 10.1063/1.4975779
[2]
Ross R T, Nozik A J. Efficiency of hot-carrier solar energy converters. J Appl Phys, 1982, 53, 3813 doi: 10.1063/1.331124
[3]
Liu H S, Han N N, Zhao J J. Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: From structures to electronic properties. RSC Adv, 2015, 5, 17572 doi: 10.1039/C4RA17320A
[4]
Parzinger E, Miller B, Blaschke B, et al. Photocatalytic stability of single- and few-layer MoS2. ACS Nano, 2015, 9, 11302 doi: 10.1021/acsnano.5b04979
[5]
Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7, 699 doi: 10.1038/nnano.2012.193
[6]
Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499, 419 doi: 10.1038/nature12385
[7]
Yin Z Y, Li H, Li H, et al. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6, 74 doi: 10.1021/nn2024557
[8]
Choi W, Cho M Y, Konar A, et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv Mater, 2012, 24, 5832 doi: 10.1002/adma.201201909
[9]
He Y M, Yang Y, Zhang Z H, et al. Strain-induced electronic structure changes in stacked van der Waals heterostructures. Nano Lett, 2016, 16, 3314 doi: 10.1021/acs.nanolett.6b00932
[10]
Chen M, Xia J A, Zhou J D, et al. Ordered and atomically perfect fragmentation of layered transition metal dichalcogenides via mechanical instabilities. ACS Nano, 2017, 11, 9191 doi: 10.1021/acsnano.7b04158
[11]
Nayak A P, Yuan Z, Cao B X, et al. Pressure-modulated conductivity, carrier density, and mobility of multilayered tungsten disulfide. ACS Nano, 2015, 9, 9117 doi: 10.1021/acsnano.5b03295
[12]
Zhu Z Y, Cheng Y C, Schwingenschlögl U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys Rev B, 2011, 84, 153402 doi: 10.1103/PhysRevB.84.153402
[13]
Ye Z L, Cao T, O’Brien K, et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature, 2014, 513, 214 doi: 10.1038/nature13734
[14]
Selvi E, Ma Y Z, Aksoy R, et al. High pressure X-ray diffraction study of tungsten disulfide. J Phys Chem Solids, 2006, 67, 2183 doi: 10.1016/j.jpcs.2006.05.008
[15]
Hangyo M, Nakashima S I, Mitsuishi A. Raman spectroscopic studies of MX2-type layered compounds. Ferroelectrics, 1983, 52, 151 doi: 10.1080/00150198308208248
[16]
Ramakrishna Matte H S S, Gomathi A, Manna A, et al. MoS2 and WS2 analogues of graphene. Angew Chem Int Ed, 2010, 49, 4059 doi: 10.1002/anie.201000009
[17]
Duwal S, Yoo C S. Shear-induced isostructural phase transition and metallization of layered tungsten disulfide under nonhydrostatic compression. J Phys Chem C, 2016, 120, 5101 doi: 10.1021/acs.jpcc.5b10759
[18]
Livneh T, Sterer E. Resonant Raman scattering at exciton states tuned by pressure and temperature in 2H-MoS2. Phys Rev B, 2010, 81, 195209 doi: 10.1103/PhysRevB.81.195209
[19]
Nicolle J, Machon D, Poncharal P, et al. Pressure-mediated doping in graphene. Nano Lett, 2011, 11, 3564 doi: 10.1021/nl201243c
[20]
Cheng X R, Li Y Y, Shang J M, et al. Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure. Nano Res, 2018, 11, 855 doi: 10.1007/s12274-017-1696-y
[21]
Chi Z H, Zhao X M, Zhang H D, et al. Pressure-induced metallization of molybdenum disulfide. Phys Rev Lett, 2014, 113, 036802 doi: 10.1103/PhysRevLett.113.036802
[22]
Nayak A P, Pandey T, Voiry D, et al. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide. Nano Lett, 2015, 15, 346 doi: 10.1021/nl5036397
[23]
Dou X M, Ding K, Jiang D S, et al. Tuning and identification of interband transitions in monolayer and bilayer molybdenum disulfide using hydrostatic pressure. ACS Nano, 2014, 8, 7458 doi: 10.1021/nn502717d
[24]
Li F F, Yan Y L, Han B, et al. Pressure confinement effect in MoS2 monolayers. Nanoscale, 2015, 7, 9075 doi: 10.1039/C5NR00580A
[25]
Xia J, Yan J X, Wang Z H, et al. Strong coupling and pressure engineering in WSe2–MoSe2 heterobilayers. Nat Phys, 2020, 17, 92 doi: 10.1038/s41567-020-1005-7
[26]
Wang H N, Zhang C J, Rana F. Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2. Nano Lett, 2015, 15, 339 doi: 10.1021/nl503636c
[27]
Cunningham P D, McCreary K M, Hanbicki A T, et al. Charge trapping and exciton dynamics in large-area CVD grown MoS2. J Phys Chem C, 2016, 120, 5819 doi: 10.1021/acs.jpcc.6b00647
[28]
Wang M S, Li W, Scarabelli L, et al. Plasmon-trion and plasmon-exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2. Nanoscale, 2017, 9, 13947 doi: 10.1039/C7NR03909C
[29]
Ruppert C, Chernikov A, Hill H M, et al. The role of electronic and phononic excitation in the optical response of monolayer WS2 after ultrafast excitation. Nano Lett, 2017, 17, 644 doi: 10.1021/acs.nanolett.6b03513
[30]
Li Y Z, Shi J A, Mi Y, et al. Ultrafast carrier dynamics in two-dimensional transition metal dichalcogenides. J Mater Chem C, 2019, 7, 4304 doi: 10.1039/C8TC06343E
[31]
Ahn C, Lim H. Synthesis of monolayer 2D MoS2 quantum dots and nanomesh films by inorganic molecular chemical vapor deposition for quantum confinement effect control. Bull Korean Chem Soc, 2022, 43, 1184 doi: 10.1002/bkcs.12608
[32]
Sridevi R, Pravin J C, Babu A R, et al. Investigation of quantum confinement effects on molybdenum disulfide (MoS2) based transistor using ritz Galerkin finite element technique. Silicon, 2022, 14, 2157 doi: 10.1007/s12633-021-01010-w
[33]
Trovatello C, Katsch F, Li Q Y, et al. Disentangling many-body effects in the coherent optical response of 2D semiconductors. Nano Lett, 2022, 22, 5322 doi: 10.1021/acs.nanolett.2c01309
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 533 Times PDF downloads: 54 Times Cited by: 0 Times

    History

    Received: 27 February 2023 Revised: 27 March 2023 Online: Accepted Manuscript: 25 May 2023Uncorrected proof: 28 June 2023Corrected proof: 14 July 2023Published: 10 August 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yao Li, Haiou Zhu, Zongpeng Song. Pressure manipulation of ultrafast carrier dynamics in monolayer WS2[J]. Journal of Semiconductors, 2023, 44(8): 082001. doi: 10.1088/1674-4926/44/8/082001 Y Li, H O Zhu, Z P Song. Pressure manipulation of ultrafast carrier dynamics in monolayer WS2[J]. J. Semicond, 2023, 44(8): 082001. doi: 10.1088/1674-4926/44/8/082001Export: BibTex EndNote
      Citation:
      Yao Li, Haiou Zhu, Zongpeng Song. Pressure manipulation of ultrafast carrier dynamics in monolayer WS2[J]. Journal of Semiconductors, 2023, 44(8): 082001. doi: 10.1088/1674-4926/44/8/082001

      Y Li, H O Zhu, Z P Song. Pressure manipulation of ultrafast carrier dynamics in monolayer WS2[J]. J. Semicond, 2023, 44(8): 082001. doi: 10.1088/1674-4926/44/8/082001
      Export: BibTex EndNote

      Pressure manipulation of ultrafast carrier dynamics in monolayer WS2

      doi: 10.1088/1674-4926/44/8/082001
      More Information
      • Author Bio:

        Yao Li is an M.S. student at the Shenzhen Technology University under the supervision of Prof. Haiou Zhu. His research focuses on the dynamic behavior of high-pressure carriers based on TMDs

        Zongpeng Song Zongpeng Song is an optical testing engineer in the analysis and testing center of Shenzhen Technology University. He received his Ph.D. degree in optical engineering from Shenzhen University. His research focuses on ultrafast spectroscopy

      • Corresponding author: songzongpeng@sztu.edu.cn
      • Received Date: 2023-02-27
      • Revised Date: 2023-03-27
      • Available Online: 2023-05-25

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return