Supporting Information

Stabilizing black-phase CsPbI₃ under over 70% humidity

Tian Tian^{1, \ddagger , \dagger}, Meifang Yang^{1, \ddagger}, Jianyu Yang¹, Wu-Qiang Wu^{1, \dagger}, and Liming Ding^{2, \dagger}

¹Key Laboratory of Bioinorganic and Synthetic Chemistry (MoE), Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China

²Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China

[‡] These authors contributed equally to this work Correspondence to: T Tian, tiant59@mail.sysu.edu.cn; W Q Wu, wuwq36@mail.sysu.edu.cn; L Ding, ding@nanoctr.cn

Experimental

Materials

Unless stated otherwise, all materials and solvents were purchased from Sigma-Aldrich. Lead iodide (PbI₂, 99.999%) and Cesium iodide (CsI) purchased from Xi'an Polymer Light Technology Corp. 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST) was purchased from Sekisui Medical Co. Ltd. All chemicals were used as received without further purification.

Perovskite ink preparation and film fabrication

Firstly, an equal molar ratio of CsI and PbI₂ was dissolved in a DMSO/DMF mixed solvent (1:4 in volume ratio). Then, it was quickly injected into the methanol antisolvent under vigorous stirring, which enabled the precipitation of CsPbI₃ crystals immediately. Due to the poor solubility of CsPbI₃ in methanol, the CsPbI₃ crystals precipitated immediately. After centrifuging, the CsPbI₃ powders were dried at 90 °C for 4 hours and then redissolved in the above-mentioned DMF/DMSO mixed solvent for preparing CsPbI₃ perovskite ink. For the DAST-modified sample, 0.24 mM DAST was incorporated into the above-mentioned perovskite ink. The CsPbI₃ perovskite films were fabricated by spin-coating the 70 °C pre-heated perovskite ink onto the 70 °C pre-heated substrate at a spin rate of 4000 rpm for 50 s in ambient air, and no antisolvent and subsequent annealing process were required.

Characterization

The UV-vis absorption spectra of the CsPbI₃ films were obtained from the UV-3600 spectrophotometer (Shimadzu). The morphologies and surface coverage of the samples were characterized using a field emission scanning electron microscope (SEM, Hitachi-SU8010). The XRD patterns of the samples were measured on an X-ray diffractometer (Bruker D8 ADVANCE). Fourier-transform-infrared (FTIR) characterization was conducted by using an infrared spectrometer (Frontier, 16A01828).

Figure S1. The photo of the $CsPbI_3$ crystals obtained via antisolvent-assisted precipitation strategy.

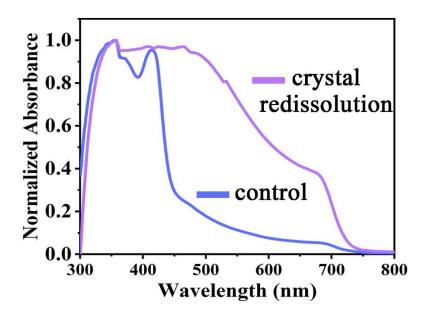
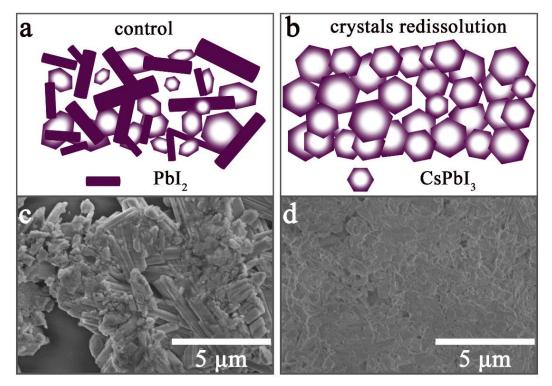



Figure S2. The absorbance spectra of the resultant CsPbI₃ films and as indicated.

Figure S3. Sketch and SEM images of (a, c) control CsPbI₃ film and (b, d) crystal redissolution-derived CsPbI₃ film.

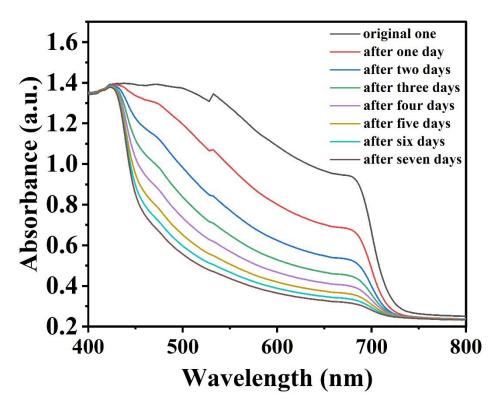


Figure S4. The absorbance spectra of the crystal redissolution-derived $CsPbI_3$ film, which has been stored in air for one week.

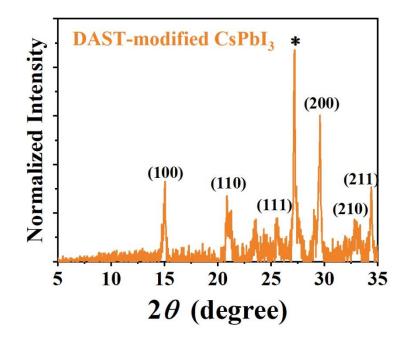


Figure S5. The XRD pattern of the DAST-modified CsPbI₃.

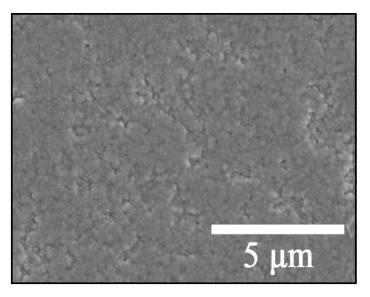
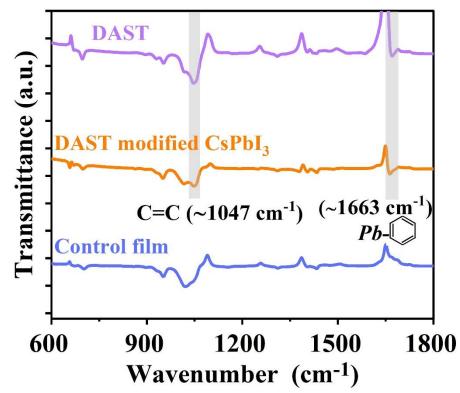



Figure S6. SEM image of the DAST-modified CsPbI₃ film.

Figure S7. FTIR spectra of DAST powder, DAST-modified CsPbI₃ film and pristine CsPbI₃ film.