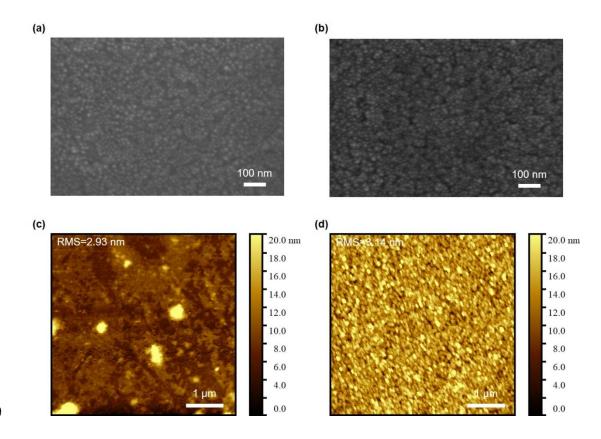
	1 Supplementary Information					
	2	Enhancing Performance of Inverted Quantum-				
	Dot Light-Emitting Diodes Based on Solution-					
	4	⁴ Processed Hole Transport Layer via Ligand				
	5	Treatment				
	6	Depeng Li ^{1,2} , Jingrui Ma ^{1,2} , Wenbo Liu ^{1,2} , Guohong Xiang ^{1,2} , Xiangwei Qu ^{1,2} , Siqi				
	7	Jia ^{3, †} , Mi Gu ^{1,2} , Jiahao Wei ^{1,2} , Pai Liu ^{1,2} , Kai Wang ^{1,2} , Xiao Wei Sun ^{1,2,†}				
	8					
	9	¹ Institute of Nanoscience and Applications, and Department of Electrical and Electronic				
	10	Engineering, Southern University of Science and Technology, Shenzhen 518055, China				
	11	² Key Laboratory of Energy Conversion and Storage Technologies (Southern University of				
	12	Science and Technology), Ministry of Education, Guangdong University Key Laboratory for Advanced				
	13	Quantum Dot Displays and Lighting, and Shenzhen Key Laboratory for Advanced Quantum Dot				
	14	Displays and Lighting, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-				
	15	Electrical Energy Materials and Devices, and Department of Electrical and Electronic Engineering,				
	16	Southern University of Science and Technology, Shenzhen 518055, China				
	17	³ Institute of Advanced Displays, Henan Academy of Sciences, Zhengzhou 450046, China				
	18					
	19	Correspondence to: S Q Jia, jiasiqi12@163.com; X W Sun, sunxw@sustech.edu.cn				
	20					
	21	Experimental				
	22	Materials .				

23	For this experiment, chlorobenzene (99%) was purchased from Aladdin. Ethanol		
24	(99.7%) and methanol (99.5%) were purchased from Shanghai Lingfeng Chemical		
25	Reagent Co., Ltd. Octane (99%) were purchased from Sigma.1,8-diaminooctane (98%)		
26	was purchased from TCI (Shanghai) Development Co., Ltd. The red CdSe/ZnS QDs		
27	were purchased from Suzhou Xingshuo Nanotech Co., Ltd. The Poly((9,9-		
28	dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl)diphenylamine) (TFB) was		
29	purchased from American Dye Source, Inc. Dipyrazino[2,3-f:2',3'-h]quinoxaline-		
30	2,3,6,7,10,11-hexacarbonitrile (HAT-CN) was from Luminescence Technology Corp.		
31	The ZnO nanoparticles were synthesized by Planck Innovation Technologies Co. Ltd.		

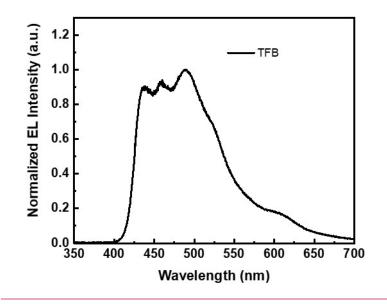
QLED device fabrication-


The ITO glasses were sequentially cleaned with DI-water, acetone, and ethanol 33 34 using an ultrasonic cleaner for 20 minutes each. All next steps were carried out in the glove box. The ZnO nanoparticles (20 mg/mL in ethanol) were spin-coated at 3000 rpm 35 for 45 s and annealing at 100 °C for 10 minutes. The QDs (15 mg/mL in octane) was 36 deposited by spinning at 3000 rpm 45 s. For the ligand-treated device, 0.2 mg/mL 1,8-37 diaminooctane in methanol was dropped on the QD layer and wait 1 minute for ligand 38 treatment. After that, excess ligand was removed by rinsing with methanol. The film 39 was baked at 100 °C for 5 min. The TFB (8 mg/mL in chlorobenzene) was spin-coated 40 onto the QD layer at 3000 rpm for 45 s and the annealing time is 10 minutes. HAT-CN 41 (30 nm) and Al (100 nm) layers were fabricated by heat evaporation. The devices were 42 then packaged using UV glue and encapsulation glass. 43

44 Characterizations

45	To measure UV-vis absorption spectra, a Lambda365 UV-vis spectrometer			
46	(PerkinElmer) was used. Steady-state PL spectra and PL QY were obtained using a			
47	Quantaurus-QY C11347-12 absolute PL quantum yield spectrometer (Hamamatsu).			
48	TRPL characteristics are measured by Fluo Time 300 Fluorescence Lifetime			
49	Spectrometer equipped with a 405 nm pulsed laser. SEM images and AFM images were			
50	obtained using Zeiss Gemini SEM 300 and Asylum Research mfp-3d, respectively. EL			
51	spectra of devices were collected by a fiber optic spectrometer (Ocean Optics USB			
52	2000). The Keithley 2614B power supply and a PIN-25D silicon photodiode were			
53	utilized to obtain the current density-luminance-voltage and EQE characteristics.			
54	Capacitance-voltage characteristics were measured by Paios System (Fluxim). Lifetime			
55	tests were conducted using a lifetime test system with photodiode holders (Guangzhou			
56	Crysco Equipment Co., Ltd).			

Method	PL QY (%)	PL peak (nm)	FWHM (nm)
w/o ligand treatment	87.3	628	23.0
/w ligand treatment	87.0	628	22.9


Table <u>S</u>1. Optical properties of QDs.

59

60 Fig. S1. SEM images of the (a) pristine QD film rinsed with chlorobenzene and (b) ligand-treated QD

- 61 film rinsed with chlorobenzene. AFM images of the (c) pristine QD film rinsed with chlorobenzene and
- 62 (d) ligand-treated QD film rinsed with chlorobenzene.
- 63

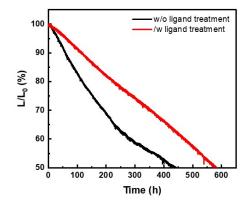
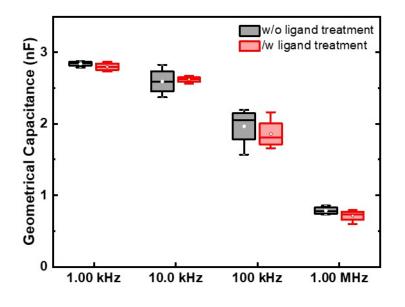



Fig. S2S3. The operational T_{50} lifetime under an initial luminance of 1,000 cd/m².

69

Fig. <u>\$3\$84</u>. The geometrical capacitance of two type devices under different frequencies (4 for each type

71 device).

72