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Abstract: A single power supply common-gate (CG) current mode transimpedance preamplifier (TIA) is devel-
oped with a 0. 5pm GaAs PHEMT process. The amplifier has a measured — 3dB bandwidth of 7. 5GHz and a tran-
simpedance gain of 45dBQ. Both the input and output voltage standing wave ratios (VSWR) are less than 2 within

the bandwidth. The equivalent input noise current spectral density varies from 14. 3 to 22pA/y/Hz,with an average

value of 17. 2pA/v/Hz. Having a timing jitter of 14ps and eye amplitude of about 138mV .the measured output cye
diagram for 10Gb/s NRZ pseudorandom binary sequence (PRBS) is clear and satisfactory.
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1 Introduction

Preamplifiers are key components in long
haul optical fiber communication systems. They
take the very weak photocurrent from a photode-
tector and output the preliminary amplified signal
in the form of voltage for further amplification.
Thus a high transimpedance gain with large band-
width and low equivalent input noise current spec-
tral density for a preamplifier are desirable. Un-
fortunately, these requirements are conflicting in
general, and tradeoffs must be made. In lumped
parameter design, the transimpedance topology
tunes the gain, bandwidth,and noise figure easily
by only the selection of a feedback resistor. This
seems to be the most common solution to the
problem.

Depending on the electrical parameter dealt
by the circuits,a transimpedance preamplifier can
be classified as either a voltage mode amplifier or
a current mode amplifier. As compared with the
former using a common- source (CS)/common-
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emitter input stage,the current mode transimped-
ance amplifier takes advantage of the low input
impedance of a common-gate/common-base tran-
sistor to reduce the input node associated pole
time constant, relaxing the selection of capacitive
photodetectors and broadening the bandwidth ef-

fectively

. Moreover, a higher transimpedance
gain and a lower equivalent input noise current
spectral density have also been reported in current
mode transimpedance design'®’. Thus it is a very
competitive choice for an optical receiver pream-
plifier.

However, the current mode TIA inherently
suffers from relatively poor noise due to the fact
that the load noise contributions of the common-
gate input stage are directly referred to the input,
so very large bias resistances of the CG stage, as
well as large transconductance of the CG and CS
transistors, are selected for low noise, and two
power supplies are required for biases™* . In our
work,a single power supply scheme, with the ben-
efits of low power dissipation and convenience of
use, is developed for a 10Gb/s moderate noise cur-
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rent density common-gate current mode TIA. Be-
low,the design considerations are discussed in de-
tail,and the simulated and measured results are al-
so presented.

2 Circuit design

2.1 PHEMT device

We designed the circuit using 0.5um gate
length low noise GaAs PHEMTs of Nanjing Elec-
tronic Devices Institute, which has a characteristic
frequency fr of 30GHz. The cross-section and I-V
curves of the PHEMT are shown in Figs. 1 (a)
and (b),respectively.
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Fig. 1 (a) Cross-section of GaAs PHEMT; (b)
Measured I-V curves

2.2 Fundamental principles

A schematic of the current mode transimped-
ance amplifier, constructed by a common-gate in-
put stage, a common-source gain stage, and two
source followers,is shown in Fig. 2. When a cur-

rent signal from the photodetector is fed to the
source terminal of P1,it travels to the drain with
unit gain and is absorbed into the common-source
stage. It then takes the form of a voltage at the
gate of P2 and is amplified by the transconduct-
ance. Then the current signal at the drain of P2 is
transformed into voltage again by the loads. After
passing through the two voltage buffers of P3 and
P5,the amplified signal reaches the out port.
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Fig. 2 Schematic of current mode TIA

In this schematic, the components R, and
R act as the bias resistances of P1,while R4 also
has a close relation with the total noise current.
R 4 is the load of P2,playing an important role in
open-loop gain and transmission delay. The Schot-
tky diodes D1~D5,fabricated by drain-source di-
rect connection of the PHEMT,elevate the source
levels of P2 and P3 to provide proper negative bi-
as,and the shunt capacitance C, tends to reduce
the negative feedback caused by D1 and D2 to im-
prove the small signal gain,especially at high fre-
quencies. A feedback resistance R; is applied from
the source of P3 to the gate of P2,through which
a shunt-shunt negative feedback is formed. To im-
prove the gain shape and broaden the bandwidth,
a peaking capacitance C, is placed between the
two source followers. By the selection of Ry and
R .the output of the two current sources P4 and
P7 can be tuned, which is very important for P3
and P5 to get proper biases in this single power
supply scheme. Finally,the second source follower
P5 must be selected deliberately, or else an extra
resistance R,, must be placed in order to get a
good output standing wave ratio.

2.3 Gain and bandwidth

When the preamplifier is connected to a pho-
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todetector, which has output impedance in the
form of R + 1/joC,where R is the series resist-
ance and C is the junction capacitance, it is very
important to realize a good match between the
amplifier and photodetector to yield the largest
gain and smallest ripples. The input impedance of
the common-gate PHEMT is about 1/g, ,which is
dependent on the biases, as shown in Fig.3 (a),
where the drain voltage V, of Pl is 2V and Vg
varies from 0 to 1V in steps of 0. 05V. From the
Smith chart,we can select an operating point for
matching in terms of the output impedance of the
photodetector, and the smallest input impedances
of the common-gate PHEMT and the photodetec-
tor can also be selected to minimize the input node
associated pole time constant for an optimal band-
width. However, because the current gain will de-
crease markedly with the frequency when V,, ap-
proaches the pinch-off voltage,as shown in Fig.3
(b) ,these operating points should be avoided.
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The current mode TIA shown in Fig. 2 can
also be divided into two parts:one is the common-
gate input stage;the other is a conventional com-
mon-source TIA. Because the unit current gain of
the CG stage and R is set to be much larger than
the input impedance of the CS amplifier,the input
signal current at the source of P1 equals the input
of the CS amplifier approximately. Therefore,
with the single dominant pole assumption and
without the influence of peaking capacitance C,
for simplicity, the transimpedance gain of a cur-
rent mode TIA will be the same as that of a CS
TIA,and can be expressed as follows™ ;

— Rf

Coe 1
i )
Taking the photodetector into account,the —3dB
bandwidth of the current mode TIA is"™’

. 1+ A

S = G R (Con # Cow + (1 + A)Cop)

TN ¢ edl 252 2d2

and the — 3dB bandwidth of a conventional CS
TIA is

Zy =
1+ jznfRf<cgd2 +

@)

(2)

o 1+ A

= 2R (Cop + Cpy + (1 + A)Cor)
where A = g.» Ry is the open-loop DC gain, and
Cypp is the output capacitance of photodetector
and varies from several tens to hundreds of femto-

3

farads.

From Eqgs. (1) and (2), we can see that the
transimpedance gain and — 3dB bandwidth will
improve with the increase of the open-loop gain
A ,but there are two limits: (1) The bandwidth is
degraded by the Miller effect, especially in the
case of a large open-loop gain; (2) The increase of
open-loop gain will cause more propagation delay
and phase shift, but the stability and a relatively
better pulse response waveform should be ensured
by a certain phase margin (PM) ,especially at high
bit rates.

The bandwidth advantage of a current mode
TIA can be found by a comparison of Eqs. (2) and
(3). The photodetector output capacitance Cpp,
which is one of the main adverse factors to band-
width in CS TIAs, as shown in Eq. (3),is effec-
tively isolated from the determination of band-
width in current mode TIAs. That is,by the intro-
duction of a common-gate input stage, the domi-
nant pole depends on the gate-drain capacitance
(Cun) of P1,the input capacitance of P2 and the
feedback resistance,rather than the photodetector
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output capacitance Cypp, the input capacitance of
P2 and the feedback resistance as before. Because
C.a (several tens of femtofarads at most) is smal-
ler than Cyp in general,the current mode TIA can
thus yield a larger bandwidth. Moreover, with the
same bandwidth,the feedback resistance in a cur-
rent mode TIA can be enlarged for a higher gain
and a lower noise current,as shown below.

2.4 Noise analysis

Perhaps a major disadvantage of common-
gate topologies is the direct relation of load noise
current to the input. This effect arises from the
unit current gain of such circuits,a point of con-
trast to common-source amplifiers® . The equiva-
lent input noise current spectral density of the
current mode TIA in Fig.2 is given by'*

_ AKT  4KkT

Sl = RT Ry

4"Tpx[ Lo L a2 (Cp + cgﬂ)?}
1

+2ql, + 2q1, +

Ry R:
1 \ . .
Ril + R_‘Z + (ZTff)Z((/gdl + ngz + Cgsg)z}

4
where I' is the noise factor.

The first two terms show the thermal noise
given by R; and Rg ,respectively. The next two
terms represent the noise contributions due to gate
leakage currents, which can be assumed to be neg-
ligible. The last two terms are the channel thermal
noise of PHEMTs. According to Eq. (4), R; and
Ry should be made as large as possible, unlike
Cypp s to reduce their noise contributions, while the
other parameters Cuis Coos Coai s Coazs §mi s &m2 »
and I', depending on PHEMT material, physical
dimension and bias, should be optimized for low
noise. For example,a larger transconductance g,
of P1 is desirable, but C,,and C,,; will inevitably
increase at the same time due to a larger gate
width, or the bias voltage of P1, determined by
Ras Rqa, and R; in our single power supply
scheme.should be tuned, but this often leads to a
conflict with the minimizing of the noise current
caused by these resistances. Furthermore, the
drain voltage variation of P1 also affects the gate-
source bias of the common-source gain stage. As a
result, the transconductance of g,. will change,
and so will the open-loop gain and the total noise
current. When it comes to a large g., for a low
noise current,according to Eq. (4),similar things

will happen to Rys Ry» Ri» Rys Cpo» Cypr» and
gm »as well as the transimpedance gain Z: and
bandwidth f_34.

By now.,one can see that some parameters act
on each other and there are many tradeoffs a-
mong transimpedance gain,bandwidth,and noise.
Compared with the works in Refs. [2,3], where
two power supplies were applied in the designs of
current mode TIAs.more attention should be paid
here to the optimal performance.

2.5 Capacitive peaking

Peaking technology is often used to broaden
the bandwidth of a preamplifier in optical receiv-
er designs'”®' . Unlike inductive peaking.where in-
ductors are placed in strategic locations in the cir-
cuits to resonate with parasitic capacitances to
broaden the bandwidth, capacitive peaking adds
an extra pole to the transfer function,resulting in
the cancellation of the imaginary part in the de-
nominator for improved bandwidth'™ . Since the
size of a capacitor is smaller than that of an in-
ductor, the parasitic effect, which may cause a
bandwidth degradation rather than an improve-
ment®', can effectively be reduced in capacitive
peaking. In our design,a capacitance C, is placed
between the two source followers, as shown in
Fig.2, through which the small signal gain shape
and bandwidth can easily be tuned, as shown in
Fig.4(a).

It is very useful for the gain shape and band-
width to be tuned when process variation or de-
vice model deviation occurs in MMIC fabrication.
However, the capacitance should also be selected
prudently because the peaking effect can cause ex-
tra propagation delay and phase shift, potentially
leading to a stability problem,and an overshoot of
gain shape of no more than 10% may be accepted
in many applications"’’ .

The decrease of phase margin due to the pea-
king effect may cause ringing in the time re-
sponse. PM = 60° is typically considered to be the
optimum value for achieving fast settling with lit-
tle ringing'®' . In Fig.4 (a).the capacitance values
of 0, 0.08, and 0.2pF correspond to the phase
margins of 62.2°,58.7", and 51.6", respectively.
The output eye diagram of the TIA,being a con-
venient way to evaluate the performance of a dig-
ital optical receiver,is also shown in Figs. 4 (b)
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Fig.4 (a) Gain and bandwidth improvement with

capacitive peaking; (b) 10Gb/s output eye diagram
with C, = OpF; (c¢) 10Gb/s output eye diagram with
C, =0.2pF

and (c¢), where the amplitude is normalized and
the influence of capacitive peaking is obvious.

2.6 Stability

After the schematic simulation,in which the
resistances, capacitances and microstrip lines are
treated as ideal components, the circuit should be
simulated with ADS momentum software to en-
sure that the performance, especially the stability
at high frequencies,is not degraded by layout and
parasitic parameters. The momentum simulation
results are shown in Fig.5,from which we can see
that the stable factor K>1 and |A| = | S S —
S1285 | <1 in the range of 100kHz~10GHz. Thus
our design satisfies the absolute stability criterion.

Fig. 6
for measurement

(a) Photograph of die; (b) Assembly of TIA

We measured the § parameter under — 30dBm
input power,using an Agilent 8720ES vector net-
work analyzer (VNA),and the results are shown
in Fig.7. The TIA has a flat forward gain curve of
S, around 10dB from 50MHz, which is the low
frequency limit of the VNA,to about 6GHz, while
the — 3dB bandwidth is 7. 5GHz. The input and
output VSWR are less than 2 within the band-
width. Considering the very low reverse gain of
S, (<X — 32dB) . the relation between the S param-
eter and transimpedance gain Z is"'"
Zy S
1- Sn
where Z, =50Q is the system impedance, and the

Z: () = 5
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Fig. 7 Measured small signal S parameter

transimpedance gain is about 45dBQ).

The noise figure (NF), measured by an Agi-
lent N8975A noise figure analyzer, varies in the
range of 4. 16~7. 8dB from 0. 25 to 7. 5GHz, with
an average value of 5. 5dB. The relation between
equivalent input noise current and noise figure can
approximately be expressed as-'!"1*

s _ AKTBAOM™ - 1)

“ Z()
where B is the bandwidth. The simulated (smooth
line) and measured (dotted line) curves of equiva-
lent input noise current spectral density, based on
Eq. (4) and the measured noise figure, respective-
ly,are shown in Fig. 8. The two curves have a

(6)

good coincidence in variation tendency,except the
differences of 2. 3~4pA/v/Hz,which are probably
due to the process variation of resistances and the
operating point deviations of PHEMTs.
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Fig. 8 Simulated (smooth line) and measured (dotted

line) equivalent input noise current spectral density

As a preamplifier, the TIA should have a
large linear range for some applications. We
measured the output P, at the frequency of
5GHz,using an Agilent E4419B power meter and
an E8251A signal generator. From Fig. 9, we can
see that the output P, is about 1. 8dBm, corre-

—_
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T

12F
20 <18 <16 14 =12 10 8 6 4
P,/dBm

Fig. 9 Output P4y measurement

sponding to a peak-to-peak current of 15. 6mA in
a 50Q system. In view of the small signal gain of S, »
the linearity can meet the needs in many cases.

In order to evaluate the time domain per-
formance of the TIA, we measured the eye dia-
gram for 10Gb/s NRZ pseudorandom binary se-
quence (PRBS) ,using ADVANTEST D3186 pulse
pattern generator and an Agilent 86100A oscillo-
scope. The output eye diagram, having a timing
jitter of 14ps and V., of about 138mV ,is shown in
Fig.10 (b).However,because there is a long time
delay at the end of the rising/falling edges in the
input signal eye diagram,shown in Fig.10 (a),the
output eye diagram in Fig. 10 (b) seems somewhat
asymmetric. That is, the output eye diagram will
be improved further once the input signal distor-
tion is eliminated.
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Fig. 10 Eye diagram measurement for 10Gb/s NRZ
pseudorandom binary sequence (a) Eye diagram of

input signal; (b) Eye diagram of output signal
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