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Abstract: A gate level maximum power supply noise (PSN) model is defined that captures both IR drop and di/d¢

noise effects. Experimental results show that this model improves PSN estimation by 5. 3% on average and reduces

computation time by 10. 7% compared with previous methods. Furthermore,a primary input critical factor model

that captures the extent of primary inputs’ PSN contribution is formulated. Based on these models,a novel niche

genetic algorithm is proposed to estimate PSN more effectively. Compared with general genetic algorithms, this

novel method can achieve up to 19. 0% improvement on PSN estimation with a much higher convergence speed.
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1 Introduction

The continual shrinking of IC devices pushes
ICs towards higher frequency,higher power dissi-

pation, and lower supply voltage'"

, resulting in
lower power supply noise (PSN) margins. PSN re-
duces devices’ actual voltage level and causes per-
formance degradation, reliability problems, and
even logic and timing errors "*). Therefore, maxi-
mum power supply noise estimation is becoming a
major design concern in nanometer IC design.
Since both the IR drop deriveing from on-
chip power grid resistance and di/d¢ noise from
I/O buffer switching contribute to power supply
noise greatly, several approaches have been pro-

B~61 "as well as di/d¢

posed to estimate IR drop
noise"™® . Senthinathan et al.™ proposed an elec-
trical chip-package interface model and analytical
equations to calculate I/O buffers’ simultaneous

switching noise. Chang et al.'”

presented a scal-
ing model to characterize the ground bounce due
to internal circuit switching. As far as IR drop is
concerned,several algorithms have been proposed
to find an upper bound for the maximum instanta-

neous current. Kriplani et al." illustrated a vec-
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torless algorithm based on uncertainty waveform
propagation, but this upper bound estimation is
too pessimistic. Jiang et al.'*’ further improved
the performance by integer linear programming.
Hsich et al.'' presented a state-of-the-art graph
algorithm based on mutually exclusive switching
relationships between gates. However, these algo-
rithms are too complicated to suitable for large
circuit analysis. Another category of research is to
obtain a lower bound of the maximum instantane-
ous current. Krstic et al ."® presented a timed au-
tomatic test pattern generation strategy with the
costs of huge memory and extensive computation.
Jiang et al .'®' proposed a genetic algorithm-based
estimation procedure,and their method is similar
to the prior approach™ but requires a shorter exe-
cution time.

Previous works have either considered IR
drop by maximum instantancous current or di/d¢
noise by I/O buffer switching. None has consid-
ered di/dt¢ noise due to logic cores, which be-
comes equally important for high performance
chip designs''®’. Its increasing importance can be
attributed to large functional density (logic cores
draw more current, thus resulting in larger power
supply noise) , fast clock rates Chigher switching
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frequency makes the di/d¢ noise much larger),
and drastically reduced resistance of low-k copper
interconnects (lower resistance alleviates IR drop
effects and causes di/d¢ noise to be more impor-
tant) in nanometer designs'''. Therefore, this pa-
per focuses on the research of on-chip logic core-
induced di/dt noise,as well as IR drop effects.
The contributions in this paper are as below:
(1) To our best knowledge, this is the first
proposal of a gate level maximum power supply
noise model that captures both IR drop and di/d¢
noise effects. The novel model in this paper im-
proves power supply noise estimation by 5. 3% on
average with 10. 7% less computation time com-
pared to schemes presented in previous litera-
tureLZif\G.% .
(2) A primary input critical factor model is
formulated that captures the extent of primary in-
puts’ contribution to power supply noise. Based on
the models, a novel niche genetic algorithm is
brought forward to efficiently estimate the maxi-
mum PSN. Compared with simple genetic algo-
rithms, this method improves the estimation by
13.8% on average with negligible computation
overhead.

2 Preliminaries and proposed models

In this section, the circuit model used in our
analysis is first presented, and then traditional
model limits are illustrated and two novel models
are proposed.

2.1 Preliminaries

The power/ground network circuit model is
illustrated in Fig. 1, where the parasitic resist-
ance, inductance, and capacitance of the power
network are denoted as R;,L;,and C;(i =1,2 for
on-chip power network and i = p,s for package
power network, respectively) . On-chip inductance
can be ignored below 1GHz, and PSN is defined
as[lO]

Vesn (1) = Vg = Vo = Ve (1) + Vi, (1) (1)
where V4 and V are the package supply volta-
ges,and Vg (¢) and Vi, (t) are the transient
voltage waveforms.

Although transistor level PSN estimation is
accurate, its computation cost is unaffordable.
Most works have tried to find input patterns to
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Fig. 1 Power/ground network model
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excite the worst case in the gate leve
those works,a gate level model is defined to cap-
ture the noise trend under a specific input vector

p as follows:

Metric_MIC(p) = D1 F(@y(pat)

clk - g € circuit
(2

where T, is the clock cycle time, F (g) is the

max
t; €[0.T

fanout load of gate g,and y(p,t;) is a function
determined by input vector p and time ¢, . Its val-
ue is 1 if gate switches at time ¢, ,and otherwise is
0.Metric_MIC(p) represents the trend of maxi-
mum instantaneous current, denoted as the MIC
model in this paper. From its definition, it is
straightforward to see that this model fails to cap-
ture the di/dt component in power supply noise.

2.2 Gate level maximum PSN model (GLMP)

With technology scaling down,power/ground
switching current rate,i.e.di/d¢ noise,is becom-
ing even more important''’,and will be the main
focus in the following model. The following are
three observations on power supply noise by tran-
sistor level simulations using TSMC 0. 18um tech-
nology.

Observation 1. Primary inputs with larger
fanout cone loads contribute more to power sup-
ply noise than those with smaller fanout cone
loads.

Observation 2: Maximum power supply noise
due to di/dt noise occurs in the first few hundred
picoseconds. The excitation in primary inputs can
control the first few lower level gates in the cir-
cuit.but fails to control the deeper level gates"'.
Therefore, a maximum current surge most likely
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appears at the beginning of the clock edge.

Observation 3. Switching in small fanout
gates contributes more to power supply noise than
that in larger fanout gates, because lower fanout
gates switch much faster and trigger their sub
gates more within the early period of the clock
cycle.

The maximum power supply noise in nanome-
ter ICs is not only dependent on the maximum in-
stantancous current,but also on the di/d¢ compo-
nent. According to Observations 1~3,fanout cone
load, transition time,and gate fanout are the most
important factors that affect power supply noise.
Therefore, the novel GLMP model under input
vector p is formulated as below:

Metric.GLMP(p) = > > o(@)y(p.t)
t; €00, Ty, g€ circuit

(€))
where T, is set as the maximum of 1/3 of the
critical path delay and is 1.5ns in this paper,
x(p.t;) has the same definition in Eq. (2),and
¢(g) equals 1 if EAT(g)<T,, and otherwise is 0.
EAT(g) is the earliest arrival time of gate g,ob-
tained by static timing analysis"® .

Compared with traditional models, the novel
model captures both the IR drop and di/dt
effects and it gives a more accurate power supply
noise estimate faster due to reduced searching
space,as validated by the experimental results in
Section 4. It should be noted that this novel model
is general and independent of optimization algo-
rithms used to search the maximum power supply
noise vector pair.

2.3 Critical primary input factor model (PICF)

Next,a critical primary input factor model is
proposed to improve the efficiency of traditional
simple genetic algorithm-based power supply noise
estimation. This is due to the fact that some pri-
mary inputs have a much larger impact on power
supply noise. Based on Observations 1 ~ 3, each
primary input’ s contribution to the maximum
power supply noise is defined as below:

. L(g
CEGD = g&,;mﬁ”(g)(l - Maxlgevel> “
where FOC (i) is the ith primary input’s fanout
cone, L (g) is the logic level of gate g,Maxlevel is
the circuit’s maximum logic level, and CF (i) is
the ith primary input’s critical factor.

Algorithm CPI-NGA PSN estimation

1: Rearrange primary inputs based on PICF

2. Partition primary inputs into critical and minor set

3: For j = 0 to MAX_GA_NUM do

4. GLMP based fitness evaluation

5 Fitness linear scaling

6 PICF model based fitness sharing

7 Stochastic universal selection

8:  One-point crossover & adaptive mutation

9: end for

10: Transistor level simulation by HSPICE under input
vector p (V1/V2) with the highest fitness

11: Report PSN

Fig. 2 Genetic algorithm based maximum PSN estima-

tion

Obviously ,a larger critical factor value means
that the primary input contributes more to the
maximum power supply noise. Given T, , primary
inputs with high critical factor have more fanout
cone gates with small loads since the gate delay is
proportional to its loads''?!. The procedure aims at
searching the proper vector pair to maximize the
power supply noise, and thus it focuses on the
most critical inputs based on our model. Experi-
mental results in Section 4 will show the model’s
effectiveness and efficiency.

3 Niche genetic algorithm based pow-
er supply noise estimation

A novel niche genetic algorithm-based power
supply noise estimation framework is illustrated in
this section, which adopts both GLMP and PICF
models. Figure 2 shows our algorithm flowchart,
(thereafter denoted as CPI-NGA) ,involving cod-
ing strategy,crossover, mutation, fitness function,
and selection.

3.1 Coding strategy

Low state, high state, low-to-high transition,
and high-to-low transition are coded as {00, 11,
01,10} in the chromosome string, respectively.
Primary inputs are encoded in their critical factor
in descending order,and this coding scheme is ef-
fective and efficient from schema theorem per-
spective'. Assuming that p = {(s;,5,,*.5y)} is
the optimal schema,schema with high fitness are
likely to survive because critical primary inputs

are grouped. Otherwise, one-point crossover will



1378 AP T

{ZS

frequently disrupt long schemas.
3.2 Crossover and mutation

Separating critical primary inputs from minor
ones also has advantages in crossover and muta-
tion operations. As previous work"* demonstra-
ted,it is common for large spike current to occur,
mainly due to several critical primary input chan-
ges. Taking primary inputs in an equal manner,
simple genetic algorithm crossover fails to realize
effective exploitation. On the other hand, one
point crossover in the proposed algorithm is quite
suitable due to considering critical factor informa-
tion. Furthermore, to enhance the searching effi-
ciency in a genetic algorithm,a one-bit mutation is
used for critical primary inputs,and a two-bit op-
erator is used for minor ones. In this paper, the
crossover rate is set as 0. 8 and the mutation rate
is set as one bit for the critical PIs and two bits
for the minor Pls.

3.3 Fitness definition and fitness sharing

To accelerate search efficiency, a fitness
function is defined based on the GLMP model,
and a linear scaling function adjusts an
individual’s raw fitness''"!. To prevent the genetic
algorithm-based exploration from being trapped
in local optima, fitness sharing is used to extend
the simple genetic algorithm.

Nonetheless, choosing a proper dissimilarity
threshold &y remains the major challenge for the
fitness sharing technique'® . Setting &, as the
string length of the candidates makes searching
inefficient because fitness sharing in minor prima-
ry inputs has little impact. Therefore, a method
that adopts diversity control only on critical pri-
mary inputs is proposed,which is further validated

by the experiments in the next section.

4 Experimental results

CPI-NGA is implemented in C+ + on a So-
laris platform. The population size is set twice as
large as the critical primary input number. There-
after all experimental results are the average val-
ues of 10 simulations. All input vector pairs ac-
quired from the gate level model are validated by
the transistor level simulation for exact compari-
son, which is done by HSPICE simulation using
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Fig. 3 PICF-based SGA improvement over MIC-

based SGA on runtime & PSN

0.18um TSMC technology, and the typical rise/
fall time value of input signals is 100ps. In this
section, the effectiveness and efficiency of the
GLMP model in capturing both IR drop and
di/dt noise is presented first,and then the superi-
or performance of the proposed novel genetic al-
gorithm.

4.1 GLMP model effectiveness and efficiency

Figure 3 is an accuracy comparison and run-
time comparison of the GLMP model-based simple
genetic algorithm (SGA) and traditional model-
based SGA on ISCASS85 benchmark circuits. Both
runtime and maximum power supply noise are
normalized to that of the traditional approach.

As demonstrated in Fig. 3, the novel model
improves the maximum power supply noise esti-
mation by 5.3% on average and 11% at maxi-
mum. The improvement makes sense because the
GLMP model captures di/dt noise as well as the
IR drop component. In addition, Figure 3 also il-
lustrates the speed advantage of the novel model
over the traditional model. On average, about
10. 7% simulation reduction is observed. Simula-
tion time is reduced by up to 22. 5% for the circuit
C5315, which has deep logic level and unbalanced
primary input critical factor distribution. This is
because the novel model only considers gates
whose earliest arrival time occurs in the specific
threshold of the early period of the clock cycle.
By eliminating gates whose earliest arrival time is
unsatisfactory,the GLMP-based fitness evaluation
can be done much faster.

4.2 PICF model-based niche genetic algorithm

In this section, the proposed CPI-NGA is
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compared with the SGA™ and general niche ge-
netic algorithm (NGA) using equal primary input
sharing techniques. All fitness functions are calcu-
lated based on the GLMP model. Here is an exper-
iment on ISCASS85 circuit C5315. Figure 4 is its
histogram of primary input critical factors. Prima-
ry inputs can be can be partitioned into 64 critical
and 114 minor ones.

With a population size of 128 and 50 genera-
tions, we make a test on C5315 using different
methods. PSN values and its trend by CPI-NGA,
SGA, and NGA are plotted in Fig. 5. Obviously
SGA is prone to be trapped in local optima before
40 generations. The improvement of NGA and
CPI-NGA from the 45th generation to the 50th
generation is less than 0.5% and 1.0% respec-
tively,and therefore setting the number of gener-
ations to 50 is enough. With better tradeoff in ev-
olutional selection and diversity control, there are
improvements of 10. 3% for NGA and 17. 8% for
CPI-NGA in maximum power supply noise estima-
tion separately. In addition, Figure 5 also shows
that CPI-NGA with diversity control on critical
primary inputs converges to the final solutions
much faster than the other two approaches.

130+
120+ J..-r-.-’_—-
110+

100+

90
80r

Power supply noise /mV

70 —— SGA —*— NGA —=—CPI-NGA

L L | | | L | )
0 10 20 30 40 50
Genetic algorithm generation number

Fig. 5 CPI-NGA versus NGA and SGA on C5315

ISCAS85 benchmark circuit

Fig. 6 ISCAS85 PSN estimation by SGA, NGA and
CPI-NGA

The following are the experimental results of
different maximum power supply noise estimation
strategies on ISCAS85 benchmark circuits. Setting
the population size at twice the critical primary
inputs, the evolutionary algorithms will not stop
until there have been no further improvements
within 5 generations or the generation number
reaches 50. All results are normalized to those of
simple genetic algorithm method.

Figure 6 shows that the proposed algorithm
improves power supply noise estimation on
ISCASS85 benchmark circuits by 13. 8% on average
and 19. 0% at maximum over the simple genetic
algorithm. Since the proposed algorithm deploys a
sharing scheme only on part of the primary in-
puts,it aims at more promising subspaces than a
general sharing scheme in a niche genetic algo-
rithm. The poor performance in C1908 is due to
the fact that the difference between critical and
minor primary inputs is not large enough, and
therefore CPI-NGA degenerates to NGA.

It should be noted that the proposed algo-
rithm has advantages in circuits with a large num-
ber of primary inputs and unbalanced critical fac-
tor distribution, which is the real case in many
general designs. For example, C7552 has over 200
inputs and dramatically different critical factors.
In this case,the niche genetic algorithm improves
PSN estimation by only 8. 1% , while the proposed
algorithm achieves 19. 0% improvement.

5 Conclusions

The power supply noise problem is becoming
even more important with the continuous supply
voltage scaling down in nanometer designs. In this
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paper.,a novel gate level model that captures both
IR drop and di/d¢ noise and a primary input crit-
ical factor model that reflects the input’s possible
contribution to maximum power supply noise are
proposed. Based on these models,an efficient esti-
mation framework based on niche genetic algo-
rithms is implemented. The proposed novel genet-
ic algorithm improves the maximum power supply
noise estimation by 13. 8% in average cases and
up to 19. 0% in the best case over the simple ge-
netic algorithm. The models and algorithm tools
can be used to deal with reliability challenges in
chip verifications. Future work will focus on de-
ploying this method on power supply grid design
and optimization.
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