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Abstract: Process variations can reduce the accuracy in estimation of interconnect performance. This work presents a

process variation based stochastic model and proposes an effective analytical method to estimate interconnect delay. The

technique decouples the stochastic interconnect segments by an improved decoupling method. Combined with a polynomial

chaos expression (PCE) , this paper applies the stochastic Galerkin method (SGM) to analyze the system response. A finite

representation of interconnect delay is then obtained with the complex approximation method and the bisection method.

Results from the analysis match well with those from SPICE. Moreover,the method shows good computational efficiency,

as the running time is much less than the SPICE simulation’s.
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1 Introduction

Since the advent of deep sub-micron (DSM)
technology,interconnect delay has become more sig-
nificant in the delay of integrated circuit (IC) sys-
tems. Specifically, beginning with 250nm technology,
interconnect delay has exceeded gate delay to be the
dominant part of circuit delay'"’ . Thus,alleviating the
impact of interconnect delay is critical in high per-
formance system design.

The delay models for interconnects have been re-
searched for several years. In Ref. [2] the Elmore
model was proposed to estimate the delay of RC in-
terconnects. Kahng and Muddu presented the equiva-

lent Elmore model based on RLC interconnects by
3,4]

considering the impact of coupling inductances*
However,these models are all based on fixed parame-
ters. Due to the sensitivity of circuit performance® ,
the impact of process variations must be considered
when the delay model for interconnects is construc-
ted.

This paper proposes a stochastic model in the
presence of process variations. which treats electrical
parameters as random variables. Following this model
and combining SGM with PCE, our method analyzes
interconnect delay and models the stochastic response
in terms of orthogonal polynomial expansions. As a
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result,in comparison with SPICE simulation and Mont
Carlo analysis, the technique not only matches well
but improves the computational efficiency.

2 Stochastic model for interconnects

The coupled interconnects can be modeled as
RLC circuits consisting of many interconnect seg-
ments. Each segment is modeled as a multiple = sec-
tion. Figure 1 shows the coupled RLC lumped model,
where line 1 is the aggressor and line 2 is the victim.
Vims Vizs Risand C, are the input signals, excitation
resistance,and load capacitance, respectively. Part II
is the lumped circuit of interconnects, which is com-
posed of n interconnect segments.

L TC

cn

Fig.1 Lumped model for interconnects with process variations
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The electrical parameters of each segment de-
pend on interconnect geometries,such as metal height
(H) ,metal width ( W) ,and ILD thickness (T).These
interconnect geometries are affected by process varia-
tions, which exist because of non-ideal conditions dur-
ing manufacturing. Thus,the geometric characteristics
of interconnects, and consequently, their electrical
characteristics, should be modeled as random varia-
bles.

Let 0 denote the sample space of experiments of
manufacturing outcomes. For z € 2,let a stochastic se-
quence {e;(z).,e,(z),+,¢e,(z)} represent u geomet-
ric characteristics of interest. The space of all such
stochastic sequences is denoted by ®:0— R". In gen-
eral,we can assume that the eclements of the sequence
have mean zero. This is easily achieved by subtracting
the mean from each random variable. Based on the
experience of engineering practice, we know that the
Gaussian distribution can describe the geometric char-
acteristics of interconnects very well®*"® . Thus,in this
paper,the elements of stochastic sequence are mod-
eled to be Gaussian. The fact that {e; } -, are Gaussian
is not a constraint. The original random variables {e; ,
€257, ) representing the interconnect variations can
be Gaussian or non-Gaussian. Other common distribu-
tions were mentioned in Ref.[9].

Without loss of generality,we assume that {e; .e;

--,e, } 1is subject to Gaussian distributions. These are
modeled as normal Gaussian random variables. In
general,e; s &5, ***, e, may be correlated. This implies
that the parameters are not orthogonal to each other.
Here we define an orthonormal stochastic sequence &’
={¢'1+¢’s,++.e’, }» which can be obtained from {e; ,
€2+°**+e, ) by a linear transformation like PCA"" . The
electrical parameters are functions of all the random
variables. We attempt to capture the effects of the
process variations on electrical parameters by express-
ing them as linear functions. This is in accordance
with the models developed in much of the contempo-
rary literature""'*'. However, we highlight that there
are no limitations in choosing any particular form of
the expansion for electrical parameters in term of g”.
Thus,we have:

A=A+ el +der + 0+ Ael @y

where A is the electrical parameter such as resistance
r,self inductance [, mutual inductance [, ,ground ca-
pacitance c, or coupling capacitance c..A is the mean
value of the electrical parameters,and A; is the pertur-
bation in A due to the variation in ¢’ . Because process
variations affect these clectrical parameters simulta-
neously,all the electrical parameters should change as
Eq. (1) at the same time.
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Fig.2 Decoupled model for RLC interconnect segment

3 Analysis of delay for a stochastic mod-
el

A interconnect segment with a multiple = model
is illustrated in Fig. 1. Let ¢; = [ Vi, Voo I[ys I |" be
the input voltage and current of the aggressor and vic-
tim,and @, = [ Vo » Vs I » I ]" be the output volt-
age and current of the aggressor and victim. The
Kirchhoff equation in a complex frequency domain
for a interconnect segment is given by

+
o= [e T @
where I' is the identity matrix, R, L ;and C are the re-
sistance matrix, inductance matrix, and capacitance
matrix considering the parasitic coupling effect be-
tween interconnects.

In order to decouple the coupled interconnects,
we introduce an orthogonal matrix M. Let gof ,and go;
be the voltages and currents after transformation. The
relationships between ¢ and ¢, »and ¢ and ¢, are ex-
pressed as Egs. (4) and (5).

M = {ﬂ/z ﬁ/z} 3
—v2/2 V2/2
, (M0
@i = ( 0 Mfl)soi (4
, (M0
Po = ( 0 M">¢° 5

Defining R", L ,and C” as the resistance matrix,
inductance matrix,and capacitance matrix after trans-
formation,we have:

R =R (6)
L = M'LM (D
C=M'CM &

From Egs. (4) ~ (8), we can obtain a new system e-
quation of a decoupled interconnect segment in a
complex frequency domain as follows:
p I R +sL7,
. i D)
|:SC r }90
Letting ¢; and ¢, be the input and output signals,

Po —

a new model for the interconnect segment can be pro-
posed,as shown in Fig. 2. It is clear that the coupled
interconnect segment is decoupled into two independ-
ent segments.
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Fig.3 Decoupled aggressor line

The remaining n — 1 interconnect segments can
also be decoupled in a similar manner. By cascading
the aggressor and victim of every interconnect seg-
ment,the lumped model shown in Fig. 1 is decoupled
into two independent interconnects.

In this example,we analyze the decoupled aggres-
sor line, which is shown in Fig. 3. For the driver and
receiver ends, the boundary conditions are shown as

follows:
Vi = Viu — R I (10)
I, = sCV, (1D
Define the variables g; and ¢, as
g =R +r  +sli =R. +r/ +sl/+
DI +slipe] (12)
j=1
gi=ri+sli=r+sl; +>)(rj+sl;)e)
j=1
i=2,3,,n (13)
C,':SC};[:SEQ:,"FZSCZ;”‘E;’ i = 1725“'7’171 (14)

j=1
u
* - T I * 4 I
¢, = sCcy +C1) = 5(cy,, +C + E SCane;  (19)
j=1

The aggressor line can be represented in complex
frequency domain by Kirchhoff law based nodal anal-
ysis equations.

V;nng = V/l(gl t g, + Clglgz) - Végl
0=-g V’l + V/z(gz + g5t ng2g3) - V;gz
]0 =— g Vi + Vi(gs+g +cig,8) - Vigs (16)

0==V, .+ V,(+c,g.)

We introduce a concept called the polynomial
chaos expression (PCE)M, whose fundamental func-
tions are Hermite polynomials. The definition of Her-
mite polynomials is given in Ref.[13]. The Hermite
polynomials form a set of orthogonal bases in the Hil-
bert space with Gaussian measure. The inner product
is defined as

(Fe) g(e)) = Jf(s’%g(s’)W(s’)ds/ an

D(&)

where W (g) is the probability density function
(PDF),and D(g") is the integral interval of g .

We rewrite the nodal analysis equations into ma-
trix formulation X (s.g) = M(s,g) Y (s.g). Y (s,
e)=(Vi(s,g), =,V ,(s.g))7T is the response vec-
tor of Eq. (16). According to the orthogonal identity
M, Y (s,g) can be approxi-
mated by an infinite series of Hermite polynomials.

of Hermite polynomials

Y(sig) = Dlai(s)H, (g)
i=1

= (Dlan (O H () D aw (HH, (£)) (18)
i=1 i=1

where H,;(g") is the i-order Hermite polynomial.,and
a1:(8) s+ a, (s) are the approximation coefficients.

To calculate the approximation coefficients in
Eq.(18), Y (s,g) has to be truncated after a finite
number of terms.

According to the stochastic Galerkin method
(SGM)'*), one of the most important components is
the test functions. They are used to make the residual
error given in Eq. (19), which is the error produced
by substituting the truncated expansion for the accu-
rate solution Y (s,g"),as small as possible in the norm
sense.

Ap(sag) = D M(s.e)H, (e)ai (s) — X(s.8)
i=1

(19

In the stochastic Galerkin method (SGM), test

functions are set to be the same as the fundamental

functions,which means that for Egs. (16) and (20),
they should satisfy:

(A (5.8 H;(g)) =0 (20)
where j=0,1,2,--,m.
We thus have
(> TM(s.e)H, (e)e; (s) H;(g))
i=1
= (X(s.&).H;&) 2D

Based on the definition of inner product, the e-
quation above can be rewritten as

E[ J M(s,s/)H,-(s’)Hj(s/)st/}ai(s)
=1 = pie)
" T
= ( J Vin g H,Wdg ,0--0) (22)
D(¢)
The term in the square brackets on the L. H. S of
Eq. (22) is an n X n matrix.e; (s) is an n X1 coeffi-
cient vector to be determined. The integration on the
R.H.S is a constant vector. Considering the situations
of j=1,:+,m and integrating them into a matrix formu-
lation, we can obtain a new matrix equation about s

M ()Y (s) = X'(s) (23)
where
" T
X (9= (J Vi g Hy Wdg -+, Jv;m g. H,,Wdg ,0-+-0)
D(g) D(&) »
Y7(s) = Can () vaim () ot s () o saum (S

M"(s) is the coefficient matrix, whose elements are
integral matrixes of order m.

In complex frequency domains, s can be ex-
pressed in the form of complex exponential function s
=|s|exp(i®) ,where |s| is the amplitude and ¢ is the
phase. In this paper, we acquire sample points in the
complex frequency domain by increasing the ampli-
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tude and phase alternately. The sampling curve in a
complex plane is like a helical curvilinear that extends
infinitely from the origin. Then, the numerical solu-
tions of a,; (8),+*,a,» (§) can be calculated through
adopting different sampling points s; (i = 1,2, -+,
P,),where P, is the number of sampling. Due to the
characteristic of this analytical method,it is not feasi-
ble to approximate functions in a complex domain on-
ly with the polynomials of s in real domain. There-
fore,according to the Walsh law"'*"'"
mation model is introduced as
1

k
Das
v=—k

»a NEW approxi-
24)

where a, =a,; + a,.1.

If we let f(s)=1/V,(s).then the problem focu-
ses on approximating the function f(s).According to
the least square method in a complex domain, the nor-
mal equation is given by

Fenxaren © Ackenxa = f(41<+2)x1 (25
where A iz x1 = [a—kl s A —g2s °°" s Qi1 akZ]T is the
matrix of unknown quantities, Fx+2) xur+2 1S the co-
efficient matrix, and fuy+2 1 is the sampling matrix
of f(s).

After solving Eq. (25) ,the approximation coeffi-
cient a, is determined. Substituting a, into Eq. (24),
we can obtain the approximate expressions of a,; (s),

“ya.m (). Thus,the voltage response of the aggressor
in a complex domain is shown as

Via(s,g) = V,(s.6) = Dlan(HH, (g) (26)
i=1

The time domain response can be obtained by the in-
version of a Laplace transform.

V(1) = D (que’' + e+ queli' )Y H, (&)
i=1

27)
where p; and g; are the zeros and poles, respective-
ly.

Analyzing the decoupled victim similarly, the
time response v’y (£,&) can be obtained the same
way as the aggressor was.

Suppose V, is the value of the output signal and ¢
is the interconnect delay. According to Eq. (5), the
exponential equation of the aggressor’s response be-
fore decoupling is taken by

Vi = va(z.g) + vp(r,e) (28)

Note Equation (28) is a transcendental equation;
the analytic solution cannot be obtained directly. In
the signal’s rising time,the transcendental equation is
monotone. Thus,we can obtain the numerical solution
of r with numerical techniques such as the bisection
method. Here we define a function Q(z) as follows:

0@ = vy () + v (r,8) = Vy (29)

Table 1 Means of lumped RLC interconnect segments

Parameter | Rs/Q|Cy/pF| ¢g/pF | ¢./pF | I/pH | In/pH r/Q

Value 250 50 | 0.2699 | 0.9582 | 2.1578 | 1.6746 | 25.6692

Let ¢ be the midpoint between zero and T,,
where T, is the signal’s rising time. The possible situ-
ations of Q({) are listed as follows.

(1) Q(® =0,then r=¢.

(2) Q%) #0,then Q (Y has the same sign as
Q) or Q(T).

If Q(® has the same sign as Q(0), we obtain <<
T,;else if Q(¢) has the same sign as Q(T,),we
have 0<<z<C¢. Define p as the error of Eq. (29) and
repeat the arithmetic in the new interval of r until
Q (P <<p. ¢ is regarded as the solution of the transcen-
dental equation under tolerance p.

4 Experimental results and analysis

We illustrate our method with the aid of an ex-
ample calculation on the model shown in Fig. 1. Let
the input excitations V,,; and V. be constant voltage
sources, where Vi, is the step signal and V., is zero.
Without loss of generality, we assume that the only
variation of significance is in the width W,and e, is
the geometric characteristic of W. Thus Equation (1)
can be rewritten as follows:

A=A+ Avew (30)

The number of interconnect segments in the lumped

model is determined by thumb criterion''* . Let D be

the length of the interconnect, T, be the rising time of

the input signal,and ¢ be the propagation speed of e-

lectromagnetic waves in the medium. The segment
number n can be given by

D

T.c

The first test case taken into consideration is the

n > 10X (31

RLC model shown in Fig. 1,whose segment number is
4.Table 1 shows the mean values of the distribution
parameters of interconnect segments. The percentage
of process variations is the 3¢ value of Gauss distribu-
tion of geometric parameters. We compare the 50%
delays obtained from HSPICE simulation with those
from the analytical method. The results with a maxi-
mum width variation of 20% are summarized in Table
2.The relative errors are also listed. When consider-
ing different process variations, we assume that every
interconnect segment has different geometric charac-
teristic. The experimental results demonstrate the
method proposed in this work is effective to estimate
the delay of interconnects with process variations.
The result of our method is an expression of the
response as a multi-dimensional polynomial that can
be directly evaluated. There is no need to repeatedly
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Table 2 Time and relative errors of interconnect delay

HSPICE | Analysis | Relative error
/ns /ns /%
No process variations
(6w = 0%) 24.543 24.472 0.289
Same process variations 93,590 93.739 0.931
(ew = —2.971%)

Different process variations

(ew1 =2.18% ;642 =1.16% , 25.743 25.623 0.466
ews = —1.24% sequ =4.84%)

generate samples of the random parameters, which is
required to solve the system in Monte Carlo analysis.
Due to the large dimensionality of the sample space,
Monte Carlo analysis can be very time consuming.
Thus, the running time of our method is much less
than that of Monte Carlo analysis.

In the next test, we consider new distributed RLC
lines, which have different numbers of interconnect
segments. The variations of parameters are also the
same as above. We compare the 50% delays and run-
ning times obtained from SPICE based Monte Carlo
(SPMC) simulation (500 and 1000 sampling points)
with those from the analytical method in Table 3. At
each of the leaf nodes, the differences between the
delays obtained from the analytical method and
SPMC is about 0.1% or less, while the running times
of the analytical method are much less than SPMC.
Figure 4 shows the comparative curves of delay and
running time between the analytical method and
SPMC. Figure 5 shows the histograms of the delay at
node 4 produced by the analytical method and SPMC,
respectively.

Table 3 50% delay and running time of the analytical method and SPMC (500 and 1000 sampling points)

Interconnect delay Running time
Node
Analysis/ns SPMC_500/ns SPMC_1000/ns Analysis/s SPMC_500/s SPMC_1000/s
n=4 24.472 24.521 24.554 6.1410 34.57 76.74
n=>5 27.217 27.379 27.358 7.3280 34.81 78.72
n=6 29.876 29.963 29.999 9.0230 35.72 79.30
n="7 32.148 32.399 32.382 10.5780 36.53 81.05
n=38 35.061 34.885 34.419 12.2190 37.39 82.72
36
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Fig.4 Comparison of 50% delay and running time from this
method and those from SPMC (500 sampling points and 1000
sampling points) (a) Comparative curves of 50% delay; (b)

Comparative curves of running time

Fig.5 Delay distribution at node 4 by the analytical method
and SPMC (1000 sampling points) (a) Histogram produced by
this method; (b) Histogram produced by SPMC
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5 Conclusion

The development of IC technology has made
process variations a new challenge in IC manufactur-
ing. In order to describe an efficient approach to esti-
mate interconnect delay, this paper constructs a sto-
chastic model in the presence of process variations.
The proposed approach decouples the coupled inter-
connect segments and combines PCE with SGM to an-
alyze the delay of stochastic coupled interconnects.
Comparing of our results to SPICE simulations de-
monstrates an excellent match. In addition, our meth-
od consumes much less time than SPMC.
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