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Abstract: We design a reconfigurable pipelined multiplier embedded in an FPGA. This design is based on the modified

Booth algorithm and performs 18 X 18 signed or 17 X 17 unsigned multiplication. We propose a novel method for circuit op-

timization to reduce the number of partial products. A new layout floorplan design of the multiplier block is reported to

comply with the constraints imposed by the tile-based FPGA chip design. The multiplier can be configured as synchronous

or asynchronous. Its operation can also be configured as pipelined for high-frequency operation. This design can be easily

extended for different input and output bit-widths. We employ a novel carry look-ahead adder circuit to generate the final

product. The transmission-gate logic is used for the low-level circuits throughout the entire multiplier for fast logic opera-

tions. The design of the multiplier block is based on SMIC 0. 13pm CMOS technology using full-custom design methodolo-

gy. The operation of the 18 X 18 multiplier takes 4. 1ns. The two-stage pipelined operation cycle is 2. 5ns. This is 29. 1%

faster than the commercial multiplier and is 17. 5% faster than the multipliers reported in other academic designs. Com-

pared with the distributed LUT-based multiplier,it demonstrates an area efficiency ratio of 33 : 1.
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1 Introduction

Nowadays, it has been proven that FPGAs are
well suited for use as reconfigurable hardware to ac-
celerate software in many applications''~" . Image/
video processing tasks are particularly well suited to
hardware acceleration because of the inherent paral-
lelism and data flow structure. Most image/video pro-
cessing tasks are multiplication-intensive.

Conventional FPGA architectures are well suited
to binary addition. However, configuring FPGAs for
binary multiplication results in inefficient usage of the
reconfigurable logic resources. It has been reported
that a typical multiplication-intensive application can
use over 70% of the FPGA logic resources. Reference
[4] shows that the silicon area can be saved by a 100

: 1 ratio. The speed advantage can be 10 times that of
a LUT-based multiplier implementation. One solution
to obtain efficiency in both area and speed is to em-
bed dedicated multipliers into an FPGA design. Much
effort has been devoted to the techniques of the de-

U= Kang et al .M sug-

sign and its implementation
gested a high-speed multiplier using an algorithm to
achieve fast multiplication by generating fewer par-
tial-product rows in 2’s complement representation.
Haynes and Cheung'"' suggested a reconfigurable mul-
tiplier constructed using an array of 4bit flexible array

blocks (FABs). Any 4n X 4m bit signed/unsigned bi-
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nary multiplication can be represented as a combina-
tion of FABs. The multiplier has good flexibility and
area utilization when it is used on operands with small
bit-widths. However,the speed and area are degraded
in larger bit-width multiplication.

All the major commercial FPGA providers have
embedded dedicated multiplier blocks in their high-
density FPGA offerings. For example,up to 104 dedi-
cated 18 X 18 multipliers are in Xilinx’ s Spartan-3
family'"’ and up to 150 18 X 18 multipliers are in Al-
tera’s Cyclone II family"' . All Spartan-3 devices from
Xilinx offer embedded 18 X 18 multipliers” . Each
embedded multiplier can be configured to support
synchronous and asynchronous operations. Each Cy-
clone II device in Altera’s FPGA family has one to
three columns of embedded multipliers® . Each em-
bedded multiplier can be configured to support one 18
X 18 or two 9 X 9 multipliers. This can improve the
multiplier usability but has a minor performance pen-
alty.

In this paper, we suggest an embedded dedicated
pipelined reconfigurable 18 X 18 multiplier block for
our FPGA. We provide a novel design for a reconfigu-
rable multiplier block (MB) based on a modified
Booth algorithm (MBA). The MB accepts two 18bit
words as the inputs to produce a 36bit product. The
input buses to the MB accept data in 2’s complement
form (either 18bit signed or 17bit unsigned) . The MB
can be configured to operate in synchronous

(©2008 Chinese Institute of Electronics
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or asynchronous mode,and can also be configured as
pipelined. We have tried two different methods to im-
plement the sum of partial products:the CSA (carry
save adder) array and the Wallace tree. The results
prove that even though these two types of multipliers
perform exactly the same in functionality, the regu-
larity of the layout imposes a constraint in the selec-
tion of the algorithm. To achieve good extendibility,
this constraint favors the CSA approach. For the 18 X
18 multiplier, 8 stages of partial product sums are
chained and followed by the final product calcula-
tion. We employ a novel carry look-ahead adder
(CLA) circuit to produce the final product. The im-
plementation of the MB is based on SMIC 0. 13m
CMOS technology'**'.

2 Circuit design

In our methodology for the FPGA chip design,
we provide a dedicated 18 X 18 multiplier. In design of
this multiplier, we introduce a new architecture and
circuit design to enhance the performance and give a
new layout floorplan to improve the area utilization.
Both the inputs and outputs of the multiplier are con-
figurable as registered and unregistered. The interme-
diate result of the partial-product sum can also be reg-
istered to divide the multiplication time by 2 to double
the throughput. Neither Spartan-3 nor Cyclone Il has
the option of pipelined operation. As shown in Fig. 1,
the multiplier block can be configured as five differ-
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As shown in Fig. 2, the multiplication operation is
divided into three levels. In level 1,the 9 rows of 18bit
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partial products are generated. In level 2, the partial
products are summed to obtain one row of sum bits
and one row of carry bits. In level 3,the sum bits and
carry bits are added to generate the final result.

The multiplication algorithm is detailed below.

2.1 Level 1:Booth encoder and partial product genera-
tor

The modified Booth encoding (MBE) is efficient
in reducing the total number of the partial prod-
ucts 14

For nbit 2’s complement signed numbers X and
Y ,it can be shown as

X == @, 02"V + @, 02" 4 @, 52" A e n
n—2
G2+ a2 = a2+ a2
i=0
Y = - bn,12”71 + b,l,22”72 + b;1732”73 4 oeeenen +
n—2
blzl + b()2o = - b”7|2’17l + Zbizi
i=0
Here Y can be re-organized as:
Y == b, 12"+ by 02 4 b g2 A e n
b2 4 by20 4+ by 2" = b, 2"t A e i

b2 = bi2' + b2 = b2’
== b2 b2t = b2 b, 2 -
b, 32" + b, 2" = b, 2" A e i
b2 — b,2" + by2' — b2’
=(= b, 12" +b,,2"") + (= b,,2" " +b,,2"") +
(= bus2" + b,y 2" + (= b, 2" +
B, -271) 4 eeeens (= b,2" + b2") — b2
=[(=b, 12" +b, 2" + (b, 2" +b, 2] +
[(=bys2" +b, 2" + (=b, 2" + b, 2" )] +
...... +[(= b2 + b2 )+ (= b2 + b ,2)]
=[(=2b,,2" 7 +2b,,2" ") + (=b, 2" +b, 2" )] +
[C=bus2"'+2b,,2"") + (=buy 2! +b,52 )] +
""" +[(= by2" + b2') + (= by2" + b 2]

n/2-1
= 2 (b + by — 2b2i+1)22i
i=0

Defining Ki = bgifl + bz,‘ - 2b2,‘ 1 ,Whel‘e
««,(n/2-1);then Y can be:

i=0,1,2,

n/2-1
Y = D (K)2¥
i=0

Thus the product is:
n/2-1 n/2-1

XY = X D) (K)2" = >VK,X4", where b_, is 0.1,
i=0 i=0

e (n/2 - D).

The number of partial product rows to be accu-
mulated in the multiplication of two nbit numbers can
be reduced from n to n/2. The advantages of the
MBE in both speed and area make it popular in vari-
ous applications™~7*~11

Kang et al."*' give a full account of an 8 X 8 mul-
tiplier to demonstrate the pros and cons of MBE. As
shown in Fig. 3,one additional partial-product row re-
sults from the last increment operation (second part
of the 2’s complement operation) controlled by the
neg3 signal. In handling this last increment operation,
they used the logarithmic way of finding the 2’s com-
plement of the multiplicand. Unlike the other rows,a
2’ s complement logic followed by a 5-to-1 seclector
was used in generating the last partial-product row.
The need for the last increment operation is elimina-
ted and the area is saved. However, this area saving is
traded for additional irregularity in the bit-slice lay-
out structure. We postpone the increment operation
needed for partial products to the Carry-Save Adder
stage and streamline the layout of the multiplier
block. This postponed increment technique saves 1/9
of the CSA area and reduces the delay in the CSA op-
eration by ~10%..

The sign extension needed in the partial-product
accumulation is predicted and minimized during the
formation of the partial products, generally called
sign extension prevention. Our implementation of the
sign extension, as opposite to the traditional ap-
proach,reduces the CSA adders by half. This further
reduces the delay in the CSA operation.

We now detail our novel Booth encoder and par-
tial product generator (PPG) implementation that
minimize the multiplication delay and maximize the
area savings. In the MBE scheme''"', the multiplier is
portioned into three-bit groups that overlap by one
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Table 1 Truth table for the Booth encoder operation. As proposed by Agrawal and Rao™!, we
bia bi bi-1 | Booth encoder | comp | shift | zero use two-bit sign generation to eliminate the need for a
0 0 0 +0x 0 1 ! full-range sign extension, which requires full-range
0 0 ! tlx 0 0 0 adders in all stages of the CSA operation and leads to
0 1 0 +1x 0 0 0 C .
significantly increased delay, power, and area. The
0 1 1 +2x 0 1 0 i S }
1 0 0 T ox 1 1 0 sign extension is summarized as follows:
1 0 1 “1x 1 0 0 (1) Complement the sign bit.
1 1 0 - 1x 1 0 0 (2) Pad 1 to the left of the sign bit.
1 1 1 —0x 1 1 1 (3) Add 1 to the sign bit of the first partial prod-

bit. The Booth encoder uses cach group of three-bits
to create three control signals: comp, shift, and zero.
As shown in Table 1,the partial product generator u-
ses the three signals to generate the 2’s complement
partial-product rows by controlling the data operation
of the multiplicand.

The Boolean expressions from Table 1 are as fol-
lows.

comp= b,

shift=b,b, 1 +(~b)(~b, ;)

zero=b;s1 bib; 1+ (~b;s1)(~b)(~b; 1)

As follows, we explain the operation of the Booth

encoder.
Recoded digit  Partial product operation on multiplicand
0 0
+1 as is
+2 shift left by one
-1 complement
-2 shift left followed by complement

As shown in Fig. 4,the Booth encoder generates
three partial-product control signals. The final incre-
ment operation controlled by the negation signal in
Ref. [3] at the end of the CSA operation is eliminated
and thus leads to an array of perfectly parallelogram-
shaped partial products. The sign extension to form
the partial products uses the sign extension prevention
procedure from Agrawal and Rao''®. Each partial
product needs to be sign-extended prior to the CSA

uct.

Steps 1 and 2 are shown in Fig. 4. Step 3 is folded
into the CSA as an extra operation on the sign bit.
The pad 1 and add 1 operations are carried out in par-
allel to the CSA operation and do not add additional
delay to the multiplication. The speed increase from
the sign-bit extension prevention is significant for
large multiplicand. The transistor-level implementa-
tion of the Booth encoder and PPG uses the transmis-
sion-gate logic to gain further performance improve-
ment.

2.2 Level 2:partial products summation

For the partial products summation, most multi-
pliers use ripple carry adder (RCA) arrays, Wallace
trees (WT) ,or carry save adder (CSA) arrays to ac-
cumulate the multiple rows of partial products™' . The
RCA array has the best structural regularity in layout
but the worst delay. The order of magnitude of its
critical path is O(M +2N)H4,

toae 2 LM = 1) + (N = D ]ty + (N = 1)t + tana
where M and N are the bit-widths of the multiplier.
The Wallace tree delay is O(log, N) and has the best
speed among the three methods® "
however, cannot fit into a circuit, like a multiplier,

. Its layout,

with a regular area constraint. In our design,we used
the CSA array for the best trade-offs in speed and layout
structure. The critical path delay is O(N — 1),

Lot & Lang + (N = D Feary  Emerge

Ped
— )

Booth encoder

|

— ) t|
b, T_DO '_I‘:[>sh1f i
|

Fig.4 Booth encoder and PPG
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where t,.4 and t.., are the delays through the starting
AND gate and the carry-chain. An additional advan-
tage of the CSA method is the addition of the pipe-
lined structure for reconfigurability.

2.3 Level 3:final adder

We used a carry look-ahead adder (CLA) to
speed up the addition of the final 36bit sum and carry
vectors. The two operands are partitioned into multi-
ple kbit groups. Each group produces sum (s;) and
carry (c¢;) through generate (g;) and propagate (p;)
signals:

gi=a;b;,

pi=a;Db, or

ci=gitpici

s;i=a,Pb,Pc,-;(when p,=a;,+b;,) or

Si:pi@ci—l pi:ai@bi)

ci=g tpgi-1tpipi-18-.t

pPiPi-1**P1Po& Tt PiPi-1*P1DPoCo
The critical path delay and area are O(log, N) and O
(Nlog, N) ,respectively. It has been shown that the
best trade-off in speed and area comes from the 4bit
CLA™"" . Since the bit-widths of the final sum and car-
ry vectors are both multiples of 4,the 4bit CLAs are
the building blocks of the final adder.

In a typical 4bit CLA design, the critical path
contains 6 stages of AND-OR delays (Fig.5(a)). A
modified architecture’ , as shown in Fig. 5 (b). re-

pi=a; +b,

(when

duces it to 4 stages. We propose an architecture,
shown in Fig. 5(c) ,to further reduce it to 3 stages. We
used the transmission-gate logic to implement the
3-stage CLA for the best performance.

3 Layout implementation

As shown in Fig. 6(a) ,the tile-based FPGA con-
tains multiple multipliers occupying contiguous logic
block tiles. Each multiplier block occupies multiple
contiguous logic block tiles in the same column. Multi-
ple multiplier blocks can also be contiguous and re-
place the entire logic block column. The layout of
each multiplier block has a height of 4 logic tiles and.
similar to the logic blocks,the routing of the multipli-
er input and output signals are arranged to switch
from and to the surrounding channel wires.

The layout of the multiplier block is thus con-
strained by the tile-based FPGA architecture and the
routing structure. The implementation of the multipli-
er block is based on SMIC 0. 13um CMOS technology.
The schematic and full layout is shown in Figs. 6(b)
and 6 (c). The height of the multiplier block is dis-
played as the horizontal side. The entire multiplier
circuit contains 27,605 transistors laid out in a block
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Fig.5 (a) Typical 4bit CLA architecture; (b) Architecture in

Ref.[14];(c) Our 4bit CLA architecture
area of 63. 50pm X 892. 00pm.

4 Design verification

In addition to the standard DRC/ERC,LVS veri-
fications,an extensive set of random test vectors have
been applied to the multiplier circuit in the pre- and
post- layout simulations. In particular, the multiplier
circuit is simulated in the mixed-level simulator Mod-
elSim-Hsim. In the mixed-level simulations,the multi-
plier is described in both the behavioral and transistor
levels. The simulation vectors from the two levels of
simulation are compared and verified. For the 18 X 18
multiplication, the worst-case delay is from

00 0000 0000 0000 000111 1111 1111 1111 1111

which results in the carry signal generation in all
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Fig.6 (a) Floorplan of the full chip; (b) Schematic of the multiplier block; (¢) Layout of the multiplier block

The layout has been rotated 90" to display better.

CLA bits. The pipelined and non-pipelined operation
delays are 2.5 and 4. 1ns, respectively, under the
worst-corner condition.

S Performance and area comparison

The comparison of the last-stage PPG from our
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proposed postponed increment technique versus the
conventional 2’s complement implementation and the
2’s complementation technique proposed by Kang, et
al .") is given in Table 2. All three cases are based on
0.13pm CMOS technology. In speed.our implementa-
tion is 88% and 72. 4% faster. In area,it is 64. 6% and
17. 3% smaller.

Table 2 Comparison with two other PPG methods

. Kang et al.
. Conventional | Kang et al. Our
Conventional proposed
method proposed method
method method
X (scaled to method (18X 18
(16 X 16 bit) . . (scaled to .
18 X 18bit) | (16 X 16bit) . bit)
18 X 18bit)
Delay
1. 64 1. 845 0.71 0. 80 0.22
/ns
Area
, 997 1122 480 1080 794
/umZ

Table 3 shows the comparison of performance
and area for multipliers from different providers.

Table 3 Comparison with proposed multipliers

. Delay Area
Reconfigurable ,
/ns ,/,lmz
Conventional LUT-based
o yes 1938601
multiplier
Conventional multipliert®
. no 4.84 14840

(16 X 16bit)
C tional multiplier®]

onventional mu 1P ier o 5. 45 16695
(scaled to 18 X 18bit)
€ tal. d multipli

ang e a. proposed multiplier o 449 14859
(16 X 16bit)
K tal. d multipli

ang et a proposef multiplier o 497 16716
(scaled to 18 X 18bit)
Hz and Ch L6 -

aynes ar{l ' eung pro yes 79194
posed multiplier
Multiplier block used in Spar-
tan-3 family yes 4.00
(0. 09um technology)
Multiplier block used in Spar-
tan-3 family yes 5.78
(scaled to 0. 13um technology)
Multiplier block used in Cy-
clone II family yes 4. 00
(0. 09pm technology)
Multiplier block used in Cy-
clone IT family yes 5.78
(scaled to 0. 13pm technology)
Our MB (18 X 18bit) yes 4.10 56642

Table 3 shows that our multiplier is 29% smaller
than the multiplier based on 4 X 4bit flexible array
blocks (FABs) proposed by Haynes and Cheung'*'. As

an embedded multiplier in FPGA,our implementation
is smaller than the LUT-based multiplier by a factor
of 33. Our implementation is 24. 8% faster than the
conventional multiplier™! and 17.5% faster than the
approach proposed by Kang et al.”’ Compared with
the embedded multipliers in commercial FPGAs, our
implementation is 29. 1% faster than Xilinx’s Spar-
tan-3 family""' and Altera’s Cyclone II family™’.
6 Conclusion

A novel reconfigurable embedded pipelined 18 X
18 multiplier block used in FPGAs was proposed. We
presented a novel Booth encoder and partial product
generator and used a postponed increment technique
to further reduce the delay and area. We used a
2-stage reconfigurable pipeline to
throughput. Our method provides a more regular ar-
chitecture, which can more easily extend the MB to a
DSP block.

enhance the
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