Supercritical carbon dioxide process for releasing stuck cantilever beams*

Hui Yu(惠瑜), Gao Chaoqun(高超群), Wang Lei(王磊), and Jing Yupeng(景玉鹏)[†]

(Integrated Circuit Advanced Process Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China)

Abstract: The multi-SCCO₂ (supercritical carbon dioxide) release and dry process based on our specialized SCCO₂ semiconductor process equipment is investigated and the releasing mechanism is discussed. The experiment results show that stuck cantilever beams were held up again under SCCO₂ high pressure treatment and the repeatability of this process is nearly 100%.

Key words: SCCO₂; sticking effect; release; cantilever beam; MEMS **DOI:** 10.1088/1674-4926/31/10/106001 **EEACC:** 0170G; 2575F

1. Introduction

Cantilever beams are widely used in MEMS structures and devices [1-3] because they are easy to fabricate. However, they are often attached to the substrate after wet etching of the sacrificial layer due to strong capillary forces^[4]. Some researchers have investigated the mechanism of the sticking effect^[5] and proposed the theoretical analysis of sticking phenomena. Mastrangelo^[6] examined the deflection, mechanical stability and adhesion of thin micromechanical structure under capillary forces. Lin^[7] discussed sticking phenomena on a cantilever beam with wetting length of liquid less than the beam length after spinning/drying. Lin and Chen^[8] derived an adhesion criterion for center-anchored circular plates in microstructures. Besides theoretical research, several efficient sticking-free release processes were developed, such as XeF2 dry release process^[9] and SCCO₂ release process^[10]. No matter the theoretical analysis and experimental sticking-free release processes, they both try to avoid the sticking effect during the microfabrication of cantilever beams. For cantilever beams which have already attached to the substrate, they are believed failed forever and cannot be processed in the next processing.

In this work, based on our SCCO₂ semiconductor process equipment, we explored the release processes for stuck cantilever beams. A multi-SCCO₂ release and dry process is proposed to completely release stuck cantilever beams. It turns out that this release process can be a master solution for all wet processes in MEMS/NEMS fabrications.

2. Experiments

In order to explore release processes based on SCCO₂, cantilever beams with the same width and different length were fabricated using MEMS microfabrication processes. The fabrication steps are shown in Fig. 1. Before the fabrication of cantilever beams, the RCA cleaning process was used to clean the wafer. First, 0.5 μ m SiO₂ sacrificial layer was deposited by PECVD process. Then, it was patterned to define the anchor of the cantilever beam. After that, 0.5 μ m SiN_x structural layer was deposited by PECVD process and patterned to define the cantilever beam. Finally, the SiO_2 sacrificial layer was released in BOE wet etchant.

The SCCO₂ release processes were conducted on our specialized SCCO₂ semiconductor process equipment shown in Fig. 2. Figure 3 shows the process chamber where wafers are held. The equipment contains the following main components. A refrigeration system keeps CO₂ in liquid phase and a heating system before the chamber allows high temperature and pressure CO₂ gas to be ventilated to the chamber. A CO₂ delivery system is among the entire equipment with a precise flow rate control unit which can be used to convey CO2 in gas, liquid and supercritical state. A pump is added before the chamber which can compress CO_2 to a supercritical state. The process chamber is the place where the release and dry processes take place. It is capable of heating and cooling and the temperature and pressure can be controlled precisely. A backpressure regulator behind the chamber allows for rapid depressurization of the chamber manually. The whole equipment is controlled by a center computer.

The standard SCCO₂ release and dry processes based on our equipment are as follows:

(1) After releasing 0.5 μ m SiO₂ sacrificial layer by BOE, the wafer was transferred to the chamber with an ethanol ambience.

(2) Liquid CO_2 was delivered to the chamber to replace ethanol. Through time control and observation from the quartz

Fig. 1. Microfabrication steps for cantilever beams. (a) SiO_2 sacrificial layer preparation. (b) Anchor of cantilever beam definition. (c) SiN_x structural layer deposition. (d) Sacrificial layer releasing.

Received 1 April 2010, revised manuscript received 8 June 2010

^{*} Project supported by the National Natural Science Foundation of China (No. 60976017).

[†] Corresponding author. Email: jingyupeng@ime.ac.cn

Fig. 2. SCCO₂ semiconductor process equipment.

Fig. 3. Process chamber

window on the chamber, when the chamber was full of liquid CO_2 without any ethanol, the delivery of CO_2 was stopped.

(3) By temperature and pressure control, CO_2 was kept beyond its supercritical point (31.2 °C, 7.3 MPa).

(4) The chamber was depressurized gradually to 0.1 MPa at rate of 0.6 MPa/min and CO_2 was transformed from supercritical state to gas.

(5) The chamber was cooled to room temperature and the wafer was taken out.

The stuck cantilever beams were treated under multi-SCCO₂ release and dry process. Detailed steps of multi-SCCO₂ release and dry process are listed as follows:

(1) The wafer with stuck cantilever beams was cleaned by DI water then delivered to the chamber.

(2) Liquid CO_2 was conveyed to the chamber. When the wafer was completely immersed in liquid CO_2 , the delivery of CO_2 was stopped.

(3) The chamber was heated gradually from room temperature to $31.2 \,^{\circ}$ C and the pressure of the chamber was kept beyond 7.3 MPa. Liquid CO₂ was transformed to supercritical state.

(4) The chamber continued to be heated and the temperature was kept above 50 $^{\circ}$ C and the pressure above 10 MPa. This state was maintained for 2 h.

(5) The chamber was depressurized rapidly from 10 to 0.1 MPa at rate of 0.6 MPa/s while keeping the temperature constant.

Table 1. Dimensions of the fabricated MEMS cantilever beams.

Parameter	Value
Cantilever width (μ m)	10
Cantilever length (μ m)	20-300
Cantilever thickness (μ m)	0.5
Gap between cantilever and sub-	0.5
strate (μ m)	

Fig. 4. Sticking model for cantilever beams.

(6) The chamber was cooled to room temperature and the wafer was taken out.

3. Results and discussion

In this work, various dimensions of cantilever beams were fabricated to test the different release processes. The parameters of the fabricated cantilever beams are given in Table 1.

The process which causes the sticking effect is the final release and dry process. According to the sticking model in Fig. 4 proposed by Lin^[7], the adhesion criterion to determine whether the cantilever beam is sticking or not is

$$h_{\rm c} = \sqrt{\frac{\gamma \cos \theta_{\rm c}}{Et^3} (4b^3 L - b^4 - 4La^3 + a^4)}, \qquad (1)$$

where γ is the surface tension between liquid and air, *E* is Young's modular, and θ_c is the contact angle. The liquid locates from *a* to *b* between the cantilever beam and the substrate. The length, width and thickness of the cantilever beam are *L*, *w* and *t*, respectively. In this experiment, the cantilever beam is SiN_x thin film and *E* is 300 GPa. The liquid is DI water and γ and $\cos \theta_c$ are 7.275×10^{-2} N/m and 0.45, respectively. At the beginning of the dry process after releasing the sacrificial layer, suppose the DI water fills the entire length *L* between the cantilever beam and substrate. For the shortest fabricated cantilever beam ($L = 20 \ \mu$ m), the calculated adhesion criterion h_c according to Eq. (1) is 0.647 μ m. As the designed gap between the cantilever beams and substrate is 0.5 μ m, all of the beams will be inevitable to attach to the substrate. Figure 5 shows the sticking effect under this situation.

If SCCO₂ release and dry process is used instead of the traditional wet etch and dry process mentioned above, the sticking effect can be avoided. The perfectly released cantilever beams are shown in Fig. 6. Regular interferometric fringes

Table 2. Physical properties of CO_2 in different phases.			
Phase	Diffusivity (cm ² /s)	Viscosity (mN·s/m ²)	Density (kg/m ³)
Liquid	10 ⁻⁵	1	10 ³
Supercritical fluid	10^{-3}	10^{-2}	10 ²
Gas	10^{-1}	10^{-2}	1

Fig. 5. Microscope photo of stuck cantilever beams.

Fig. 6. Completely released cantilever beams using SCCO₂ release and dry process.

indicate that the cantilever beams have been released completely without sticking. The main reason that the sticking effect can be avoided is that the surface tension of SCCO₂ stays at zero beyond the critical point and liquid droplets are no longer formed^[11]. The phase transformation of CO₂ during the release and dry process based on our equipment is illustrated in Fig. 7. 99.9999% CO₂ gas from the cylinder was refrigerated to liquid along curve *A* before it was delivered to the chamber to replace the solvent. When the chamber was full of liquid CO₂, it was heated and CO₂ reached supercritical state along curve *B*. When the drying process began, the chambers pressure was reduced while keeping the temperature constant along curve *C*. Before the wafer was taken out, the chamber was cooled to room temperature along curve *D*. During the whole process, no transformation of any solvent from liquid to gas was gener-

Fig. 7. States transformation of CO₂ during release and dry process.

Fig. 8. Stuck cantilever beams were released again under multi-SCCO₂ release process.

ated, so no interface of liquid-gas was formed and the sticking effect was completely avoided.

The results of multi-SCCO₂ release and dry process for stuck cantilever beams are shown in Fig. 8. Interferometric fringes appeared again, which indicate that once attached cantilever beams have been held up. So the stuck cantilever beams were released again under the treatment of multi-SCCO₂ release and dry process. 36 groups of cantilever beams (44 cantilever beams make up one group) were tested and the results showed that only several of them failed to release. SCCO₂ has diffusion properties similar to gas and solution properties similar to liquid. Table 2 compares the physical properties of CO₂ in different phases. The perfect transportation property of SCCO₂ allows CO₂ molecules to penetrate and reach any space whose volume is bigger than that of CO₂ molecules under high pressure^[12]. The mechanism of releasing stuck cantilever beams by

Fig. 9. Mechanism of SCCO₂ releasing stuck cantilever beams.

high pressure SCCO2 is illustrated in Fig. 9. SCCO2 molecules move to the narrow space at the anchor of the cantilever under high pressure. As long as the pressure is high and SCCO₂ is sufficient, the space of the anchor can be filled with high density of SCCO₂. Then, the chamber is rapidly depressurized, CO₂ transforms from supercritical state to gas. During this process, high pressure CO₂ bubbles (6-7 MPa) are formed and stuck cantilever beams are held up under the force resulting from the formation of CO₂ bubbles. The entire process is very similar to opening a bottle of soda water, when a great deal of CO₂ bubbles generate and large force is caused. Once the cantilever beams are released, they will not stick to the substrate because the chamber is now full of CO₂ gas and no interface of liquidgas is formed. This process is repeatable, which means if the cantilever beams attach to the substrate again under capillary force, they can be held up again under high pressure SCCO₂ treatment. This is because there is always a cavity at the anchor of the cantilever which can be filled by SCCO2 molecule. Generally speaking, any microstructure with a cavity which forms

during the release and dry process under capillary force can be released again under the multi-SCCO₂ release and dry process.

4. Conclusion

In this paper, SCCO₂ release processes are investigated and a multi-SCCO₂ release and dry process is proposed to release stuck cantilever beams. The SCCO₂ release process is explored based on our SCCO₂ semiconductor process equipment. Experiment results show that once stuck cantilever beams were released completely under the multi-SCCO₂ release process treatment. This novel releasing process can be used to release failed cantilever beams and other microstructures caused by the sticking effect. It is an efficient method to rescue stuck microstructures in MEMS fabrication.

References

- Xua S, Mutharasan R. A novel method for monitoring masschange response of piezoelectric-excited millimeter-sized cantilever (PEMC) sensors. Sensors and Actuators B, 2009, 143(1): 144
- [2] Xiao Dingbang, Wu Xuezhong, Hou Zhanqiang, et al. Highperformance micromachined gyroscope with a slanted suspension cantilever. Journal of Semiconductors, 2009, 30(4): 044012
- [3] Lee H C, Park J H, Park Y H. Development of shunt type ohmic RF MEMS switches actuated by piezoelectric cantilever. Sensors and Actuators A, 2007, 136(1): 282
- [4] Maboudian R, Carraro C. Surface chemistry and tribology of MEMS. Annual Review of Physical Chemistry, 2004, 55: 35
- [5] Rollot Y, Régnier S, Guinot J C. Simulation of micromanipulations: adhesion forces and specific dynamic models. International Journal of Adhesion and Adhesives, 1999, 19(1): 35
- [6] Mastrangelo C H, Hsu C H. Mechanical stability and adhesion of microstructures under capillary forces-part I: basic theory. J Microelectromechan Syst, 1993, 2(1): 33
- [7] Lin M J. Sticking effect on cantilever beam with wetting length of liquid less than beam length after spinning drying. International Microsystems, Packaging, Assembly Conference, Taiwan, 2006: 1
- [8] Lin M J, Chen R. Sticking effect on center-anchored circular plates in microstructures. IEEE Trans Compon Packaging Technol, 2001, 24(4): 645
- [9] Park J S, Park H D, Kang S G. Fabrication and properties of PZT micro cantilevers using isotropic silicon dry etching process by XeF₂ gas for release process. Sensors and Actuators A, 2005, 117(1): 1
- [10] http://tousimis.com/detail.php3?Pid=8785C&menu=0
- [11] Zhang Xiaogang, Han Buxing. Cleaning using CO₂-based solvents. Clean, 2007, 35(3): 223
- [12] Han Buxing. Supercritical fluid science & technology. Beijing: China Petrochemical Press, 2005