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1　Introduction

Temporal floorplanning problems come f rom

dynamically reconfigurable FP GAs. This kind of

hardware system usually consist s of a reconfigu2
rable f unctional unit ( RFU ) [1 ] which can be pro2
grammed during t he execution of t he p rogram wit h

varying configurations at different times[ 2 ] . Each

configuration , at a certain time , has several RFU

operations (called RFUO Ps or modules) which are

mapped to different part s of a complete p rogram or

f unction.

When t he RFU is configured ,not all t he mod2
ules can be placed on t he chip at t he same time due

to area limitations. Therefore ,we have to schedule

t hese modules wit h a proper loading sequence in

order to meet t he place const raint and f ulfill t he

whole f unction in less time. Nat urally ,it becomes a

3D placement p roblem. The objective is to allocate

modules in t he RFU to optimize both the area and

execution time wit hout violating t he temporal con2
st raint s.

Several met hods to deal wit h such a problem

have already been proposed recently. Teich et al .

fir st used a component grap hs to address it [ 3 ] . They

assumed no dependence among scheduled modules

and derived necessary and sufficient conditions for

a feasible placement and propo sed an enumeration

scheme by using a branch2and2bound t ree search

algorit hm to find a feasible solution. Later ,t hey ex2
tended t heir work and took into account t he p re2
cedence const raint s using a grap h theoretic charac2
terization of feasible solutions[4 ] . Bazargan et al .

dealt wit h two types of placement in reconfigurable

systems : online placement , where arrival time of

RFUO P is determined at runtime and is not known

a p riori ,and offline placement in which t he sched2
ule is known at compile time[ 1 ,2 ,5 ] . In t he case of

online placement , t hey allocated the f ree space of

RFU to an RFUO P dynamically based on greedy

algorit hm. In t he case of offline placement , t hey

presented an algorit hm based on t he simulated an2
nealing met hod[14 ] and got a bet ter placement than

t he ones generated by t heir online algorit hm. Un2
like above researchers , Reference [ 6 ] p roposed a

topological rep resentation named 32dimensional

sub2t ransitive closure grap h (3D2sub TCG) to solve

t he temporal floorplanning problem. It is t he first

work t hat used a topological rep resentation to han2
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dle t he p roblem. They used the simulated annealing

met hod to search t he solution space and got bet ter

result s than Sequence Triplet .

In t his paper ,we present a novel met hod using

a t hree2dimensional bounded slice surface grid (3D2
BSSG) st ruct ure to rep resent a placement in the

RFU . It is developed f rom BSG st ruct ure ,which is

p roposed to handle classical 2D floorplanning/

placement p roblems[7 ] . In cont rast wit h 3D2sub2
TCG in Ref . [ 6 ] , t hough both are topological rep2
resentations , t he 3D2BSSG st ruct ure is easier for

coding and simpler to get a neighborhood place2
ment in t he course of searching in the solution

space. Moreover , by changing t he“shape”of the

3D2BSSG st ruct ure ,our met hod is able to deal wit h

p roblems concerning non2regular shaped chip s and

also can meet t he shape demand on t he placement .

Based on the 3D2BSSG st ruct ure , we int roduce a

solution space smoot hing met hod to achieve an op2
timal placement . Solution space smoot hing is a spe2
cial technique of multi2space search developed in

recent years[8 ,9 ] . Compared wit h a simulated annea2
ling algorit hm ,it needs few cont rol parameters t hat

are easy to be determined.

We adopt several benchmarks of early re2
searchers to test our approach and t he experimental

result s show t hat it is a new and efficient method

for temporal floorplanning p roblems.

2　3D2BSSG structure

2. 1　Topological structure of 3D2BSSG

The 3D2BSSG st ruct ure is a topology ,defined

in 32dimension space using an x z y2coordinate sys2
tem. In order to describe t he 3D2BSSG st ruct ure

conveniently ,we use a p hysical image as well as t he

mat hematical definition. See Fig. 2.

First we define t he unit segment s. On t he x y z2
coordinate system ,we define ,by t he following for2
mulas ,t hree types of open surface segment s ( U X ,

U Y , and U Z) associating with coordinate axis re2
spectively. Each U X , U Y or U Z is called t he 3D2
BSSG2unit or simply unit .

U Xi , j , k = { ( x , y , z) | x = i , j - 1 < y < j + 1 , k - 1

< z < k + 1}

U Yi , j , k = { ( x , y , z) | y = j , i - 1 < x < i + 1 , k - 1

< z < k + 1}

U Zi , j , k = { ( x , y , z) | z = k , i - 1 < x < i + 1 , j - 1

< y < j + 1}

( i , j , k :integers)

Note t hat each unit is a 2 ×2 square surface

segment whose subscript s i , j , k denote it s center .

And all unit s are perpendicular to t he axis which

t hey associate with. See Fig. 1.

Fig. 1　3D2BSSG2unit 　(a) U X; (b) U Y; (c) U Z
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　　3D2BSSG is a system consisting of t he set

UBSSG of such surface segment s (See Fig. 2) :

UBSSG = {U Xi , j , k | i , j , k :integers , i + j :odd , j +

k :odd}U

{U Yi , j , k| i , j , k :integers , i + j :even , j + k :

odd}U

{U Zi , j , k| i , j , k : integers , i + j : odd , j + k :

even}

Fig. 2　Part of 3D2BSSG structure

Then we can int roduce t he topological rela2
tions between unit s. It should be mentioned t hat

t he relations defined below only exist between u2
nit s in t he same direction ( x , y or z) of t he x y z2co2
ordinate. There is no such relation between unit s of

different directions.

Two horizontal unit s U Xi1 , j1 , k1 and U Xi2 , j2 , k2

are said adjacent if | i1 - i2| = 1 , | j1 - j2| = 1 ,and

| k1 - k2| = 1. A horizontal unit U Xi1 , j1 , k1 is said

right2to U Xi2 , j2 , k2 if i1 - i2 = 1 , | j1 - j2| = 1 ,and |

k1 - k2 | = 1. The relation“right2to”is extended

t ransitively :if a horizontal unit U Xi1 , j1 , k1 is right2to

anot her horizontal unit U Xi2 , j2 , k2 and U Xi2 , j2 , k2 is

right2to U Xi3 , j3 , k3 , t hen U Xi1 , j1 , k1 is right2to

U Xi3 , j3 , k3 . The relations between y2direction unit s

(behind) and z2direction unit s (above) can be de2
fined analogously. For example ,in Fig. 2 ,U Z0 ,1 ,1 is

“above”U Z1 ,0 ,0 .

A cuboid space surrounded by adjacent pairs

of x2direction , y2direction , and z2direction unit s is

called t he room. If a room’s lef t2near2bot tom cor2
ner is at ( i , j , k) ,we call it room i , j , k . Figure 3 illus2
t rates t he boundary adjacent unit s of room0 ,0 ,0 .

Fig. 3　Boundary adjacent unit s of room0 ,0 ,0

By definition ,t he 3D2BSSG is an infinite grid.

But for t he convenience of description and coding ,

it is wise to bound t he grid wit hin a finite grid 3D2
BSSGp×q×r ( p , q , r : po sitive integers) who se lef t2
near2bot tom corner is the origin (0 ,0 ,0) and t he

right2far2above corner is ( p , q , r) . We call it t he

domain of size p×q×r. For compactness ,portions

of unit s jut ting out side t he domain are cut off .

In order to show above defined topological re2
lations among unit s more clearly , t hree directed

grap hs are defined to rep resent , respectively , t he

relations“right2to”,“behind”, and“above”. They

are Gx (V x , Ex ) , Gy (V y , Ey ) ,and Gz (V z , Ez ) .

Given a domain 3D2BSSGp×q×r ,V x = { sx , tx } U

{ ui , j , k } where ui , j , k corresponds to t he unit U Xi , j , k .

Edges are defined as follows. sx is a source connect2
ed to all t he vertices corresponding to t he lef t x2di2
rection unit s , i . e. U X0 ,1 ,0 , U X0 ,3 ,0 , ⋯, U X0 , j , k , ⋯

where ,according to 3D2BSSG definition , j is odd , k

is even and 1≤j ≤q ,0≤k≤r. tx is a sink connected

f rom all t he vertices corresponding to t he right x2
direction unit s ,which are ,for example of t he case

p :even ,U Xp ,1 ,0 , U Xp ,3 ,0 , ⋯, U Xp , j , k , ⋯where j is

odd , k is even , and 1 ≤j ≤q , 0 ≤k ≤r. The ot her

edge (u i1 , j1 , k1 ,u i2 , j2 , k2 ) exist s if and only if U Xi2 , j2 , k2

is right2to and adjacent to U Xi1 , j1 , k1 . See Fig. 4.

The y2direction and z2direction unit adjacency

grap h Gy and Gz are similarly defined.
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Fig. 4　Directed graph Gx

It is easy to see t hat each vertex of Gx has four

vertices which are right2to it except t he source ,t he

sink , and part of boundary vertices. If we draw

t hese grap hs over 3D2BSSGp×q×r p ut ting the verti2
ces on t he centers of unit s ,each room is crossed ex2
actly by one edge in each of Gx , Gy ,and Gz . By this

relation ,an edge and a room are conveniently re2
ferred to by the other in such a fashion as“an edge

t hat cro ssed room r”, or“a room which edge e

crosses”.

On t he basis of above definition , relations be2
tween rooms can be easily int roduced. The x2direc2
tion is still taken as an example. Let r1 and r2 be

two rooms. If a directed path of x2direction crosses

r1 first and t hen crosses r2 , r2 is said right2to r1 . It

can be proved that any two rooms impo ssibly have

relations of more t han one direction. That is to

say ,t hey have eit her a unique relation of only one

direction or no relation at all .

2. 2 　Obtain 3D placement from an assignment in

3D2BSSG

　　In t he reconfigurable architect ure ,a module v

is loaded into the device for a period of time for ex2
ecution. Suppose we are given an inp ut V ,which is

a set of modules v of different sizes and durations ,

where | V | = n. Assuming t hat n≤p×q×r ,an as2
signment of V is a one2to2one mapping of modules

into t he rooms of 3D2BSSGp×q×r . A room to which

no module is assigned is empty.

Weighting of unit adjacency grap hs Gx , Gy ,and

Gz is to associate each edge e with a real number

w ( e) by t he following formula :

If e∈Ex and e crosses a non2empty room ,

w ( e) = x2direction lengt h of t he module as2
signed there.

If e∈Ey and e crosses a non2empty room ,

w ( e) = y2direction lengt h of t he module as2
signed there.

If e∈Ez and e crosses a non2empty room ,

w ( e) = duration of t he module assigned

t here.

Ot herwise , t hat is , if e is eit her to cross an

empty room or has it s end2vertex on t he source or

sink ,w ( e) = 0.

After above weight assignment , t he length of

t he longest pat h f rom the source of a unit adjacency

grap h ( Gx , Gy or Gz ) to each vertex of it can be cal2
culated by performing a well2known longest pat h

algorit hm[11 ] which we refer to p rocedure :LON G2
EST2PA T H L EN GT H ( G) where grap h G is t he

inp ut . The time complexity of LON GEST2PA T H

L EN GT H ( G) is O ( pqr) . The p urpose of comp u2
ting the longest pat h lengt h in t he unit adjacency

grap hs is to determine t he positions of modules.

Given an assignment of V to 3D2BSSGp×q×r ,

we use t he BSSG To Placement p rocedure de2
scribed below to obtain a module’s positions on t he

chip and it s start time :

Let v be a module assigned to a room whose

boundary lef t unit is U Xv , f ront unit is U Yv and

bottom unit is U Zv . Their corresponding vertices

are uUX , uU Y , and uUZ . Calculate t he longest pat hs

l x (uUX) , l y ( uU Y ) , and lz ( uUZ ) respectively. Since

every module’s x2direction lengt h , y2direction

lengt h ,and duration are all embodied in t he adja2
cency grap hs ,it is not difficult to understand t hat

t he module’s lef t2bot tom corner on t he chip is at

( l x (uUX) , l y ( uU Y ) ) and it s start time is lz ( uUZ ) .

Figure 3 is a simple example t hat shows a place2
ment obtained f rom assignment . There are six mod2
ules assigned to 3D2BSSG4×4×4 . The assignment of

t hese modules in 3D2BSSG4×4×4 and t heir corre2
sponding placement positions are given in Table 1

along wit h t heir size and duration.
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Table 1　Size ,duration ,assignment in 3D2BSSG4×4×4 and placement position of six modules

Module Widt h Height Duration Assignment in 3D2BSSG4×4×4 Placement position

1 1 5 4 room3 ,4 ,3 (5 ,2 ,0)

2 5 3 4 room1 ,3 ,2 (0 ,0 ,0)

3 2 3 3 room4 ,2 ,2 (7 ,0 ,0)

4 2 3 1 room3 ,2 ,3 (7 ,0 ,3)

5 2 2 3 room2 ,2 ,1 (5 ,0 ,0)

6 2 2 1 room2 ,2 ,2 (5 ,0 ,3)

Fig. 5　Placement obtained from assignment in Table 1

　　Since any two rooms in topological relation

(right2to ,behind or above) keep t he relation in the

outp ut of t he p rocedure ,we can prove t hat no two

modules overlap .

In addition , it is apparent t hat t he minimum

bounding box of a placement is ( l x ( tx ) ×l y ( ty ) ×lz

( tz ) ) .

2. 3　Size and shape of 3D2BSSG

Choose an approp riate size of t he 3D2BSSG

domain is very important to improve the efficiency

of algorit hms based on it . If it is too large ,t he run2
ning time is not acceptable. On t he ot her hand ,if it

is too small , many solutions are unlikely to be

reached. Nat urally , t he optimal solution is very

likely just in t hose disabled solutions.

In our experiments ,assuming p , q , and r of 3D2
BSSGp×q×r are equal ,the range from 5×5×5 to 10×

10×10 is proved to be a proper choice for problems

whose amount of modules is less than 100.

In fact ,3D2BSSG does not always need to be a

regular cuboid shape. If t he chip of t he temporal

p roblem is not a regular shape , L shape for in2
stance ,t he 3D2BSSG st ruct ure can also be reshaped

to meet t he shape demand. This kind of reshaping

can easily be achieved by prohibiting modules to be

assigned to some 3D2BSSG rooms which are out of

t he required shape.

Besides ,if t he ratio between chip area and du2
ration is given to obey ,t he 3D2BSSG st ruct ure can

also easily meet it . What we need to do is simply to

adjust t he p , q ,and r of 3D2BSSGp×q×r until t he ra2
tio between p , q ,and r is equal to t he ratio asked to

obey.

The above two merit s of 3D2BSSG cannot be

easily achieved by ot her 3D placement rep resenta2
tion ,such as 3D2sub TCG.

2. 4　Solution perturbation

In 3D2sub TCG ,five operations should be per2
formed to guarantee t horough pert urbation of t he

solution space. They are rotation , move , swap , re2
verse and t ranspositional move. To maintain t he

properties of a 3D2sub TCG , the resulting grap hs

must be updated after performing reverse , move

and t ranspositional move.

In 3D2BSSG ,t he solution perturbation is much

easier . The only operation to perturb an assignment

in 3D2BSSG is executed by swapping the content s

of randomly cho sen two rooms. Rotation of a mod2
ule when it is swapped is also f reely allowed. In

each pert urbation , we also perform feasibility de2
tection as well as Ref . [ 6 ] to guarantee no violation

against p recedence const raint s.

3　Using solution space smoothing for

temporal floorplanning

　　The basic idea of solution space smoot hing is

to gradually guide t he course of local search f rom
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smoothed solution spaces to rougher ones. Initial2
ly ,a simplified placement instance wit h a smoot h

terrain surface is solved. Then a more complicated

placement instance t hat has a rougher terrain sur2
face is generated. It takes t he solution of t he p revi2
ously solved placement as an initial placement and

f urther improves t he placement . Event ually , t he o2
riginal placement instance wit h t he most complicat2
ed search space st ruct ure is solved. The solutions

of t he simplified problem instances are used to

guide t he search of more complicated ones[ 10 ] .

There are various approaches to t ransform the

original placement instance into a series of place2
ment instances by size changing[8 ,10 ] . Here , we a2
dopt a simple st rategy as work in Ref . [ 10 ] . Let PI

be the original placement instance wit h n modules ,

and PI0 be a placement instance where all of it s

modules have t he same size and duration as the

smallest module in PI. From PI0 , we slightly

change t he size and duration of all t he modules in

PI0 simultaneously and produce PI1 . In t he same

way ,f rom PI1 we produce PI2 ,and so on. Thus ,we

obtain a smoothed sequence PI0 , PI1 , PI2 , PI3 , PI4 ,

⋯where t he solution space changes slightly f rom

smoothness to toughness.

In t he simple placement instance , due to the

same size and duration of all t he modules ,t he solu2
tion space is flat tened and has much less local mini2
mum point s. We use it as t he initial smoot hed solu2
tion space for our temporal p roblem. The size ( winit

and hinit ) and duration ( tinit ) can be calculated by

formula below.

winit = min{ w1 , ⋯, w i , ⋯, w n}

hinit = min{ h1 , ⋯, hi , ⋯, hn}

tinit = min{ t1 , ⋯, ti , ⋯, tn}

Then we can create a series of simplified

placement instances by following t he formula :

S (α) :

w i (α) = winit + ( w i - winit )
α

hi (α) = hinit + ( hi - hinit )
α

ti (α) = tinit + ( ti - tinit )
α

whereα, which should be reduced by a f unction

f (α) ,is a key parameter to lead t he solution space

smoot hing process. In order to assure t hat t he size

and duration of each module changes in a slightly ,

gradually and monotonously increasing mode ,items

( w i , hi , ti ) in t he above formula should be normal2
ized to t he range (0 ,1) . After t his normalization ,

we can see t hat a largerαcan generate a smoot her

solution space while a smallerαcan generate a rug2
ged one. Whenαµ 1 , t he size and duration of each

module will be reduced to the initial one ; whenα

drop s to 1 ,each module will be it s original one.

In fact , it is not necessary to search f rom a

very largeα. The initial value ofαis p roper as long

as it can make t he initial solution smoot h enough.

In most of our experiment we usually set t his value

to 5 and reduce it by t he f unction f (α) below :

f (α) =

0 . 8α, 　α > 2

0 . 9α, 　α > 1 . 2

0 . 98α, 　α > 1

　　This f (α) is not t he only choice to decrease

t he value ofα. It could and should be adjusted to be

suitable for a particular p roblem in order t hat not

only t he final solution quality would be improved

but also t he CPU time of t he process would be re2
duced.

4　Algorithm

The cost f unction Φ used in our algorit hm is

given by

Φ = V +βW +γO

where V is t he volume ( t he minimum bounding

box) of t he placement . We need this because not

only t he area of a device but also the total execu2
tion time should be considered. W is t he total wire2
lengt h ( the summation of a half bounding box of

interconnections) and O is t he reconfiguration and

communication overheads , bot h of t hem can be

comp uted in t he similar way as Ref s. [4 ,6 ] .βandγ

are user2specified weight s for different p roblems.

Our algorit hm is detailed below :

Step 1 :α: =α0 ; create t he initial p roblem in2
stance according to the smoot hing f unction S (α) .

Step 2 : Make a initial assignment A 0 using
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some heuristic met hod and take it as t he initial so2
lution. Then ,get t he placement t hrough BSSG To

Placement p rocedure and calculate t he cost value.

Step 3 : Change A 0 to anot her assignment A 1

by swapping t he content s of two randomly chosen

rooms , t hen get the placement and calculate the

cost value similarly as step 2. If t he cost value is

bet ter , save current assignment as A 0 . Otherwise ,

restore t he assignment to A 0 .

Step 4 : If A 0 is considered ,by some rule ,as the

optimal assignment for current p roblem instance ,

save t he result as a current solution. Ot herwise ,go

to step 31
Step 5 : Ifα= 1 , stop . The current assignment

is the final solution. In order to get t he correspond2
ing final placement ,simply use BSSG To Place2
ment again. Ot herwise , a : = f (α) ;apply t he smoot2
hing f unction to get t he next p roblem instance.

Step 6 :U sing t he saved current assignment as

t he starting solution for t he next instance and go to

step 3.

In step 4 ,t he rule of regarding an assignment

as an optimal one is to check whether t here is any

improvement in a certain number of searches. If

nothing ,the assignment is taken as an optimal one.

The time complexity of out algorit hm can be

estimated as : A ×(O (UNS + N e ) ×O ( pqr) ) ,where

A is t he number of searched solution space ,which

is determined by the initial value ofαand t he de2
creasing f unction f (α) ,UNS is t he uncertain num2
ber of searches before the search process reach the

solution , N e is t he number of searches used to en2

sure t he solution reached is an optimal or nearly

optimal one and O ( pqr) is t he time complexity of

early mentioned BSSG To Placement p rocedure.

5　Results

We implemented our temporal floorplanning

algorit hm in the C + + p rogramming language in

t he Linux environment of a PC ( Intel P4 CPU and

512M memory) .

Moreover ,we compared our result s with t hose

of 3D2sub TCG[6 ] and Sequence Triplet (ST) which

is extended f rom the well known sequence pair

(SP) [12 ] by performing t hree experiment s.βandγ

are bot h set to 1 in each experiment . The bench2
marks we adopted in t hese experiment s came f rom

t hose used in Ref s. [ 6 , 13 ] . Reference [ 6 ] has a2
dapted some of them. For example , some bench2
marks were added with reconfiguration and com2
munication overheads and some were added wit h

execution time and p recedence const raint s. Similar

adaptation was also done by us appropriately to

make the comparison fair .

In t he first experiment ,our objective is to min2
imize t he volume wit h reconfiguration and commu2
nication overheads. In order to verify our 3D2BSSG

st ruct ure it self ,we tested it based on simulated an2
nealing like Ref . [6 ] . As shown in Table 2 ,t he 3D2
BSSG st ruct ure based met hod outperforms bot h

t he ST based one and 3D2sub TCG based one ,which

can demonst rate t he effectiveness of our 3D2BSSG

st ruct ure to obtain volume optimization.

Table 2 　Result s for volume optimization with reconfiguration and communication overheads using 3D2BSSG

based simulated annealing

Circuit
# of

modules

Sum of

volume

ST 3D2sub TCG 3D2BSSG2SA

Volume Dead space Volume Dead space Volume Dead space

okp 1 50 1. 24×108 2. 16×108 42. 6 % 1. 73×108 28. 4 % 1. 65×108 24. 8 %

okp 2 30 8. 54×107 1. 28×108 33. 2 % 1. 10×108 22. 3 % 1. 09×108 21. 7 %

okp 3 30 1. 23×108 1. 85×108 33. 1 % 1. 60×108 23. 0 % 1. 56×108 20. 7 %

okp 4 61 2. 38×108 4. 17×108 42. 8 % 3. 28×108 27. 3 % 3. 07×108 22. 3 %

okp 5 97 1. 89×108 4. 48×108 57. 7 % 2. 95×108 35. 8 % 2. 38×108 20. 4 %

average 41. 88 % 27. 36 % 21. 98 %
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　　The objective of the second experiment is the

same as t hat of t he first experiment ,but t his time ,

we used our solution space smoot hing algorit hm in2
stead of simulated annealing. Table 3 shows the re2
sult s. Again ,t he effectivity and efficiency of our al2
gorit hm are exhibited.

The third experiment is intended to test t he

3D placement wit h t he considerations of p recedence

const raint s , wirelengt h , and reconfiguration/ com2
munication overheads. The result s of t his part are

also comparable ,as shown in Table 4. And t he best

result s of 3D2ami49 is p resented in Fig16.

Table 3　Result s for same objectivity as Table 2 using 3D2BSSG based solution space smoothing

Circuit
# of

modules

Sum of

volume

ST 3D2sub TCG 3D2BSSG2SSS

Volume Dead space Volume Dead space Volume Dead space

beasley 1 10 6218 8710 28. 6 % 7504 17. 1 % 7504 17. 1 %

beasley 2 17 11497 14664 21. 5 % 12402 7. 2 % 12456 7. 7 %

beasley 3 21 10362 16016 35. 3 % 12640 18. 0 % 12166 14. 8 %

beasley 4 7 10205 13800 26. 0 % 13064 21. 8 % 12490 18. 3 %

beasley 5 14 16734 22750 26. 4 % 18912 11. 5 % 18994 11. 9 %

beasley 6 15 11040 14994 26. 3 % 13200 16. 3 % 13333 17. 2 %

beasley 7 8 17168 24570 30. 1 % 20574 16. 5 % 20574 16. 5 %

beasley 8 13 83044 132275 37. 2 % 98280 15. 5 % 99216 16. 3 %

beasley 9 18 133204 174496 23. 6 % 167751 20. 5 % 167751 20. 5 %

beasley 10 13 493746 660480 25. 2 % 575685 14. 2 % 583624 15. 4 %

beasley 11 15 383391 486381 24. 8 % 438702 12. 6 % 441186 13. 1 %

beasley 12 22 646158 922080 29. 9 % 823816 21. 5 % 792360 18. 5 %

average 27. 91 % 16. 06 % 15. 61 %

Table 4　Results of volume and wirelength optimization using 3D2BSSG based solution space smoothing for 3D2
MCNC benchmark circuit s

Circuit
Sum of

volume

ST 3D2sub TCG 3D2BSSG2SSS

Volume
Wire

lengt h

Dead

space
Volume

Wire

lengt h

Dead

space
Volume

Wire

lengt h

Dead

space

3D2apte 9. 88×107 1. 18×108 495. 0 16. 2 % 1. 05×108 335. 3 5. 9 % 1. 10×108 359. 3 10. 2 %

3D2xerox 4. 05×107 5. 27×107 613. 2 23. 1 % 4. 42×107 602. 0 8. 4 % 4. 52×107 607. 3 10. 4 %

3D2hp 1. 29×107 2. 06×107 387. 3 37. 2 % 1. 50×107 158. 3 13. 7 % 1. 47×107 153. 2 12. 3 %

3D2ami33 2. 32×106 4. 18×106 84. 7 44. 5 % 3. 08×106 77. 7 24. 7 % 2. 88×106 70. 4 19. 5 %

3D2ami49 1. 32×108 2. 93×108 1040. 8 54. 9 % 1. 68×108 807. 1 21. 6 % 1. 57×108 754. 6 15. 9 %

average 35. 18 % 14. 86 % 13. 66 %

Fig. 6　Best result s of 3D2ami49 volume usage is about

8419 %1

6　Conclusion

We have presented an effective 3D2BSSG

st ruct ure based solution space smoot hing algorit hm

to solve temporal floorplanning problems for dy2
namically reconfigurable FP GAs. First ,we have de2
veloped a 3D2BSSG st ruct ure to rep resent t he

placement in such p roblems. Then ,we used t he so2
lution space smoothing algorit hm to search for t he

optimal solution. Compared wit h t he simulated an2
nealing algorit hm ,it uses fewer parameters to con2
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t rol t he search process. Experimental result s have

shown t hat our met hod is very effective and effi2
cient for temporal floorplanning problems.
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用基于 3D2BSSG结构的解空间平滑算法解决时序规划问题

郑舒一　董社勤　洪先龙

(清华大学计算机科学与技术系 , 北京　100084)

摘要 : 可动态配置的 FP GA电路的出现产生了时序规划问题1 如果把时间看作第三维度 ,那么该问题可转化为三

维布局问题1 本文提出了一个全新的三维受限切面网格结构 (3D2BSSG) ,用来表示三维布局的解 ;并引入解空间

平滑机制来搜索最优解。实验结果证明 ,所设计的基于 3D2BSSG的算法在求解时序规划问题上是十分有效的1

关键词 : 时序规划 ; FP GA ; 三维受限切面网格结构 ; 解空间平滑
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