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Abstract: A memory compress algorithm for 12-hit Arbitrary Waveform Generator (AWG) is
presented and optimized. It can compress waveform memory for a sinusoid to 16X 13bits with a
Spurious—¥ree Dynamic Range (SFDR) 90. 7dBe ( 1/1890 of uncompressed memory at the same
SFDR) and to 8 X12bits with a SFDR 79dBe. Its hardware cost is six adders and two multipli-

ers. Exploiting this memory compress technique makes it possible to build a high performance

AWG on a chip.
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1 Introduction

Arbitrary Waveform Generators (AWG) are widely used to generate stimuli for the
under—testing devices, such as telecommunication system, magnetic storage devices and
telemetry satellite. A modern high performance AWG is typically based on the direct digi—
tal synthesis (DDS) system, which consists of four major parts: the phase accumulator,
the waveform lookup table, the digital to analog converter (DAC) and the anti-alias filter
(LPF).

A typical AWG block diagram is shown in Fig. 1. The phase accumulator generates a
phase sequence for waveform look up table (WLT), which contains the digital amplitude
information of the output waveform; DAC converts the digital amplitude from WLT into
analog waveform. As a DDS system is a quantized sampled system, the noises (quantiza—
tion noise and aliasing) in the DAC output must be filterd by a LPF.

The advantages of DDS systems include fast switching time, smoothing frequency

transitions, very fine output frequency resolution (f</2") and very low phase jitter.
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FIG. 1  Block Diagram of DDS System AWG is often ﬂppl.lﬁd to syn-=

thesize more complex wave-
forms than sinusoid, it is typically equipped several mega-words” RAMs for its WLT. For
an instance, in Chase Scientific Company’s AWG1200, the optional waveform memory is
IM words standard and up to 8M'". Such large volume RAMs make it very difficult to
achieve a high system performance or reduce the system cost.

In recent years, the volume of WLT in DDS system has been reduced successfully for
sinusoid synthesis'” "', Because the methods of generating waveform data in these studies
are based on the characteristics of sinusoid, they can not be used to generate arbitrary
waveforms.

In this paper, a high rate compress algorithm for arbitrary waveforms has been pre-
sented and optimized. The result shows that for 12-b sinusoid compression, the compres—
sion rate is over 1890 ¢ 1 with a spurious<ree dynamic range 90. 7 dBc¢ which is nearly the

ideal result for 12-b sine wave.

2 Memory Compression Algorithms

Let us suppose the DIFF interpolate algorithms:

On the identical distributed nods: x#(k= 0, 1,+**, n). Let the function y= f (x) have
the value yi= f(x+). For an interpolate point (x,y) over the interval[ xm, xms 1] (m= 0,1,
*=*,n— 1), the function value y can be calculated by polynomial:

y= Pu(x) + Ru(x)

= yo+ i&yn{x - xo) + ﬁ;ﬁe}’n(x - x0)(x — x1)

+ 6;_333}'0(36 - x0)(x — x1)(x — x2)

S B
+ 4 (n! )h"& yolx = x0)(x — x1) *(x — xa-1) + Ru(x)
where, h= xi— xi-1
the first order DIFF is: Ayo= y1— yo;

the second order DIFF is: A’yo= Ayi— Ayo= ya— 2y1+ yo

the kth order DIFF is:

&k}‘u = A" l_)’l - A" ]y(: = Z (- l]jC,{"J’k—_i
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the remainder is:

R.(x) = JE;_'_ (lg))!-{x — xo)(x = x1)*(x = x) & E [xm,xms1]

As an approximation, we consider it linear, parabolic and cubic interpolation, when n

equals to 1,2, 3, respectively, and the interpolation formulas become:

Linear:
y= yo+ _h. Ay (1
Parabolic:
y=yor T ayes T e 2
Cubic:

3 SFDR of Interpolate Sinusoids

In many AWG applications, the spectral purity of the DAC output is of primary con-
cern. For a 12bits AWG system, the interpolation algorithms can interpolate the phase
points to 2" or more. The SFDR effect due to the phase truncation error can be exclude. In
interpolate sinusoids, the calculation error introduces additional noise. There are several
factors affecting the calculation accuracy, including the compress algorithms, compress
ratio and rounding.

Figure 2 shows the simulation result of .
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gorithm, the data table can be compressed to Pata Table Tength/paint
32 points without any effects of SFDR; with
the parabolic interpolate algorithm, it can be _ o
) FIG.2 Compressed Sinusold’s SFDR vs Sinusoid
compressed to 32 points with about 6dB de- Look Up Table Length.
cline of SFDR; while with the linear interpo—
late, it can be done to 128 points.

The input and output data rounding induces the rounding noise. To minimize the
hardware cost, the input data should be in a fixed-point format, which contains 1 LSBp-
p’s rounding error (peak to peak). During the interpolate calculation, the error would

increase. After output data rounding, the error would grow to 1. 52 LSBp-p. The



1078 L R 21 4

rounding noise can be reduced by increasing input data width, thereby reducing the input
data error. As shown in Fig. 3, for a 12 bits DDS system, if the input data width is
12bits, the noise floor is near — 83dBe; if the input data width is 13 bits, the noise floor is
about — 91dBc. At a high compress rate, the noise floor is determined by the calculation
inaccuracy noise; increasing input data width cannot improve the spectral purity.

Interpolate Algorithm: Parabolic: Interpolate Points: 5123 Amplitude: 4095p-p; f./f, = 0.24109
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FIG. 3 Spectra of Interpolated Sinusoids

There has to be a trade-off between compress ratio and hardware cost in order to
achieve the better system performance and lower hardware cost. Because the AWGs need
more memories than DDS systems for the sinusoid, there should be an imbalance, in
which more compress ratio is necessary. Among the compress algorithms, cubic interpola-
tion gives the best SFDR at a high compress ratio, but the hardware cost is rather high:
eight adders, three multipliers and one divider; the linear interpolation has minimum hard-
ware cost but its compress ratio is only onefourth of that of cubic interpolation. As a
tradeoff, the parabolic interpolation having six adders and two multipliers can provide the
same compress ratio as cubic interpolation do and has small effect on SFDR.

Although the hardware cost of parabolic interpolation is relatively low, the algorithm
still need to be optimized. From equation (2). it is clear that the result of the data width
of the first multiplier is doubled, as makes the second multiplier more complex. Because
the contribution to the accuracy of second order DIFF is relatively small, rounding the ad-
ditional bits of its product off does not deteriorate SFDR very much. Remaining one bit of
its friction, as results in a good SFDR (as shown in Fig. 4) , the multipliers can be simpli-

fied to an 8-h(signed) by 9-b(unsigned) and a 12-h(signed) by 9-b(unsigned) .
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4 Conclusion

A high rate memory compress algorithm has
been presented, which sharply reduces the
AWG’s waveform look up table memory at low
hardware cost. For an uncompressed waveform
look up table, a phase precision of 14-h or 15-b
can provide — 84. 3 or = 90. 3dBc of rejection of
phase truncation noise accordingly. At — 90dBe
spurious level, parabolic interpolation can provide
compression rate of 472. 6 I 1. Another compres-
sion technique employed is the well-known quar-

ter-wave symmetry compression. This technique
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is to store only 1/2 rad of sine information, but the full range of 21 can be calculated by

exploiting the symmetry of the sine function. Using this technique, the compression rate

is over 1890 ! 1. Table 1 shows the information for comparison.

Table 1 Memory Compression Technique

M emory for SFDR Hardware Cost({ not Includes Not
. ole
Sinusoid (dBe) Quarter Wave Logic )
Uncompressed 215 1 2bits 90.3 - Reference
Memory 2% 12bits 84.29 - Reference
Coarse—+ine g 3 2 . - .. .
T 29X 9hit+ 27 X 3bits 90.3 Simple Sinusoid only
Segmenlzli 10n
T avlor Series 2 Adders Available for
: 27X Thits+ 27X 3bits” 73.28
Approximation! bits+ bits 3 Multipliers Arbitrary Waveform
24X 13bits” 90. 78 6 Add \vailable £
T his Work 24X 12bits’ 80. 20 faders fvartable o
s ot o " 2 Multipliers Arbitrary Waveform
2% X 12bits 79.57

¥ Using Quarter-Wave Symmetry Compression

The AWG is more competitive and widely applied in many fields, compared with the

traditional signal generator. Unfortunately, it’s complex and the system cost is very high.

Exploiting the high rate memory compress technique makes it possible to fabricate a high

performance AWG on a chip and reduce the system cost to a large extend.
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