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Abdtract : A realistic measurement setup for a system such as a charged two-state (qubit) or multi-state quantum
system measured by a mesoscopic detector ,is theoretically studied. To properly describe the measurement-induced
back-action,a detailed-balance preserved quantum master equation treatment is developed. The established frame-

work is applicable for arbitrary voltages and temperatures.
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1 Introduction

The measurement of asingle electron statein
solid-state systems has attracted widespread atten-
tion in recent years'* *. This renewed interest
largely stems from the new field of quantum com-
putation,since a quantum-measurement procedure
is needed,for instance, at the end of a computa-
tion to read the final results,or even in the course
of computation for the purpose of error correc-
tion. A possible implementation of quantum meas-
urement in solid states is a charge qubit measured
by a mesoscopic detector ,which could be,for ex-
ample, the quantum point contact (QPC)™ .
Very recently, an elegant experiment was per-
formed by employing a QPC to measure the quan-
tum dot occupation by an extra electron,which is
further associated with a single electron spin
state!® . This experiment clearly demonstrated the
extremely high sensitivity of the QPC detector,
implying its possible wide application in the fu-
ture. It is theref ore important to develop a reliable
theoretical description for thisimportant quantum
measurement device.

This measurement problem was first studied
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theoretically by Gurvitz™"' followed by many oth-
er groups’” *'. Here we mention three typical ap-
proaches employed in the literature: (1) the so
called Bloch equation approach developed in Ref.
[1] and a number of other papers by Gurvitz et
al.; (2) the quantum trajectory technique from
quantum optics by Goan et al.®”"; and (3) the
Bayesian approach by Korotkov et al.!® . In
spite of their different forms in appearance,these
three approaches are equivalent in essence. I n par-
ticular ,all of them are based on the same (uncon-
ditional) Lindblad master equation. However, as
clearly manifested in Ref. [1], the associated
Lindblad master equation would result in the uni-
versal equal occupation probability on the qubit
states in a stationary state. Obviously ,under finite
voltages this result breaks down the detailed bal-
ance condition,which is thus valid only at a high
voltage limit™™" . In this work, we extend the
study to arbitrary voltages. Furthermore, beyond
the two-state qubit ,we will also consider a multi-
state system.

2 Mode description and formalism

As schematically shown in Fig.1,for general-
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ity (rather than the two-state qubit) ,let us consid-
er an electron in a one-dimensional array of cou-
pled quantum wells,which is measured by a meso-

scopic QPC. The entire system Hamiltonian reads
QPC

WHHH

Fig.1 Schematic illustration of using the mesoscopic
quantumr-point-contact to measure an electron in mul-

tiple coupled quantum wells

H= Ho + H (1a)
Ho = Hs + Zeictck +efdldy)  (1b)

N

N-1
Hs = cle; + Q;cliic + H.c.) (10
Sy
H = Z(qu + lech,-*cj)c*kdq + H.c.

(1d)
In this decomposition, the free part of the total
Hamiltonian, Ho, contains Hamiltonians of the
measured system ( Hs) and the QPC reservoirs
(the last two terms) . The operator ¢l (¢) corre
sponds to the creation (annihilation) of an elec-
tronin the jw well. For simplicity we assume that
each well contains a single bound state€; and is
coupled only to its nearest neighbors with cou
plingsQ; and Q;. 1. ck (cv) and di (d«) are,re
spectively, the electron creation (annihilation)
operators of the left and right reservoirs of the
QPC. The Hamiltonian H describes electron tun-
neling between the two reservoirs of the QPC de-
tector with,for instance,tunneling amplitude Q 4
+ J}X jqu;er ,which generally depends on the meas-

ured electron’ s position that is characterized by
the occupation operator clc;. This dependence
properly describes the correlation between the de-
tector and the measured system,which enables us
to draw out measurement information from the
output current,and simultaneously propagates the
back-action of the detector onto the measured sys-
tem ,causing state dephasing and relaxation.
Statistically, the measurement back-action
onto the measured system is described by a quan-
tum master equation (QME) that is satisfied by
the reduced density matrix. Regarding the tunne-

ling Hamiltonian H' as a perturbation,the second
order cumulant expansion gives rise to aformal e-
quation for the reduced density matrix!™ :

pP(t) =-ilp (1) -
a L'() G(tT)L' @) G'(t1) p(t) (2

Here the Liouvillian superoperators are defined
as,L( )=[Hs,( )],L"C )=[H,( )],and
G(t1)( )=6G(tT)( ) G'(tT) with G(tT)
the usual propagator (Green’s function) associat-
ed with Hs. The reduced density matrixp (t) =
Tro[Pr(t)],results from tracing out all the detec-
tor degrees of freedom from the entire density
matrix. Following Ref. [11],the unified QME is
obtained as

p=-ilp-ZIQ@-pQ1

where Q =Qo + X jcfcj. For simplicity ,we have
J .

assumed Qq =Qo and X & =X ,i.e. the tunneling

amplitudes are of reservoir-state independence.
Other quantities and notations in Eq. (3) are ex-

plained as follows. Q = Q'” + Q" ,and Q' =

c™ (L) Q,with c'® (L) the spectral function of
the QPC reservoirs. Under wide-band approxi ma-

tion, C'*) (L) can be explicitly carried out as:

c*™ (L) =n[x/(1- e “T)]x=-1L5v,wheren =
AU g gr,With g (gr) the density of states (DOS)
of the left (right) reservoir,and Tisthe tempera-
ture. In this work we use the unit system of h=
e= ks =1. The meaning of the superoperator

function C*) (L) will become more clear by ex-

plicitly carrying out the matrix elements of Q'*’.
In the eigen-state basis {| En } ,we easily obtain

Q% = C* (£Wm) Qmn,Where Wm = Em - En
and Qmn = Em| Q| En . In this derivation,the
simple algebra Em| LQ| En = Em| (HsQ -
QHs)| En = (Em - En) Qmn has been used. Here
we see clearly that the Liouvillian operator* L” in

c™* (L) properly involves the energy transfer be-
tween the detector and the measured system into
the transition rates, and thus implies a detailed
balance condition which determines the stationary
occupation probabilities.

Thelast term [ ] in Eqg. (3) describes the
back-action of the detector on the measured sys-
tem. In the high-voltage limit ,formally V >L ,the

spectral function C'*’ (L) =cC'*) (0) ,and Eq. (3)
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reduces to a Lindblad-type master equation
p=-ilp+ C(o)[@Q- "ZL(Q?p +pQ2)] (4)

where C(0) = c'*? (0) + ¢’ (0) . It is straightfor-
ward to check that this equation is the master e-
quation that appeared in Refs.[1,6 10].

In the following,we study the measurement-
induced relaxation of a qubit (i.e. N =2) and a
multi-state system, respectively. The detailed-bal-
ance property of our QM E will be elaborated,and
discussions will be highlighted to some important
features resulting from the detailed balance,
which is absent in the Lindblad-type Eq. (4).

3 Measurement of a qubit

For a single qubit,there is a bound level in
each well £. and€y. For clarity, our discussion is
restricted in the symmetric qubit case €a =€bv).
Under quantum measurement ,a pure state of the
qubit state evolves into a statistical mixture. Fig-
ure 2 shows such evolution by plotting the time-
dependent occupation probabilities on the individ-
ual dot states. The relevant parameters for numer-
ical calculations are adopted as follows: the ap-
plied voltage over the QPC V =Q, the inverse
temperatureB = 1/Q,the DOS in both electron
reservoirs g = gr =2/Q ,and for the QPC,we as-
sume the tunneling amplitudes Qo =Q and Xa =
0. 12 Xv =0.

In the dot-state representation as shown in
Fig.2(a) ,despite certain quantitative differences
on a short time scale,a common final occupation
probability of 1 =2 in each dot is approached,re-
gardless of whether the detailed balance is satis
fied. However ,in contrast to Ref.[1] ,this feature
is valid only for symmetric qubits, while in the
asymmetric case, it is only valid in the limit of
large measurement voltage,as we will show in the
multi-level system.

Moreover, even in the symmetric case, the
impact of the detailed balance on the qubit relaxa-
tion can be revealed by transforming the result in
Fig.2(a) into the qubit eigenstate representation,
as shown in Fig.2(b) . Noting that initially the e-
lectron is located in the left dot,which is equiva-
lent to a1 =2 probability in each eigenstate of the
symmetric qubit ,the constant dashed linein Fig.2
(b) indicates an equal occupation probability of
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Fig.2 Measurement induced qubit relaxation in the
individual dot-state representation (a) and the eigen-
state representation (b)  The results in the presence
and the absence of the detailed balance are symbolized
by C(L)" and* C(0)” ,respectively.

the two eigenstates in the absence of detailed bal-
ance. However , if the energy exchange between
the measured qubit and the QPC detector is cor-
rectly accounted for, relaxation between the
eigenstates will lead to quite different occupation
probabilities as shown by the solid curvesin Fig.2
(b) .

For the symmetric qubit ,since€. =€y, ,the fi-
nal equal occupation probability of 1 =2 in each
dot is anticipated. However, as shown by Gur-
vitz™" |in the asymmetric case (i.e. for noniden-
tical coupled dots) ,a final equal occupation prob-
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ability of 1 = 2 in each dot will also be ap-
proached. A similarly confusing feature also exis-
ted in the breakdown of the Anderson localiza-
tion,where equal occupation probabilities on each
site of the disordered chain were concluded™’.
We would like to emphasize here that the results
in Refs.[1,14] are valid only in the limit of large
measurement voltage.

4 Measurement of a multi-state sys
tem

Numerically ,we further consider N =20 wells
with randomly distributed energy levels €;). To
distinguish the electron’ s position in each quan-
tum well , we assume quantum-well-state-depend-
ent tunneling coefficients through the QPC,i. e.
Qo +X; ,andX; =/ b+ (j-1)? with j=1,2,
20. The numerical results for measurement-in-
duced relaxation are shown in Fig.3,where we as-
sume Q; =Q ,and other parameters are the same as
in the qubit measurement.

Rather than working in a large voltage limit
asin Ref.[14],here we particularly focus on the
low voltage regime,say, V <A ,withA the disorder
strength. Initially (at time t = 0) ,the electron is
assumed to be in the ground state,with a distribu-
tion probability dominantly localizing in the eigh-
teenth well ,as shown by the solid curvesin Fig. 3.
As a result of the measurement,the state relaxa-
tion gradually takes place, i. e. delocalization
leads to the redistribution of electron probability
in each well. Note that our result shown in Fig.3
(a) differs considerably from that in Fig. 3 (b)
based on the Lindblad-type master equation, Eqg.
(4) . The latter shows that after sufficient relaxa-
tion each well is occupied with an identical proba-
bility ,which was proven analytically in Ref.[14].
However ,our treatment leads to unequal occupa-
tion probabilities in each well. This discrepancy o-
riginates from whether the inelastic energy ex-
change between the detector and the measured
system is properly included in the transition
rates'*? 'which leads to a nontrivial detailed
balance condition. Remarkably ,we notice that ig-
noring thisinelastic effect in the transition ratesis
equivalent to assuming the large voltage limit.
This is in particular illustrated by Fig. 3 (c) in
comparison with Fig.3(b).
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Fig.3 Measurement-induced delocalization of the e
lectron,which is initially dominantly localized in the
eighteenth quantum well (in the ground state) ,as de-
noted by the solid curves Shown in the figure by the
dashed,dotted,and symbol curves are the distribution
probabilities in each well, at times 0. 4, 0. 8, and
5000 "', respectively. In the low voltage regime, the
detailed-balance preserved result in (a) differs consid-
erably from that in (b) obtained from the Lindblad
master equation, Eq. (4) . In the high voltage limit ,the
result in (c) from Eq. (3) recovers the prediction by
Eq. (4) .

5 Conclusion

We have studied the relaxation nature of a
qubit and a multistate system under the quantum
measurement of a mesoscopic detector. Differing
from the Lindblad-type master equation[i.e. Eq.
(4) ]1,which is in fact the starting point of some
recent literature™® ****! our treatment properly
accounts for the energy exchange between the
measured system and the detector ,which leads to
the valid detailed-balance relation and correct re-
laxation behavior. The present work may shed
new light on the future study of solid-state quan-
tum measurement and quantum feedback control.
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