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Introduction to machine learning 

Machine learning (ML) is a field of study that gives computers the ability to learn 

without being explicitly programmed, this is Arthur Samuel’s definition of ML. With 

the rapid development of Artificial intelligence (AI) technology, ML as a powerful 

computer tool has been widely used in all walks of life. The main task of ML is to 

generate a certain "model" from the data through the computer with the help of an 

algorithm, which is called an ML algorithm. Through ML algorithms, as long as the 

data obtained from experience is learned, a certain model will be obtained. In the actual 

situation, new data will be generated constantly, and at this time, as long as the new 

data is substituted into the obtained model, the new data can be analyzed, predicted and 

judged. The two main types of ML are supervised learning and unsupervised learning. 

Generally speaking, supervised learning is "teaching machine learning", and 

unsupervised learning is "machine learning by itself". Supervised learning is mainly for 

regression issues and classification issues, and clustering is a typical representative of 

unsupervised learning. This paper mainly adopts the way of supervised learning to carry 

out machine learning.

Pearson correlation coefficient (r)

The Pearson correlation coefficient (r) is a statistical measure used to measure the 

degree of linear correlation between two variables. It has a value between -1 and 1 and 

is commonly used to evaluate the correlation between two continuous variables.

𝑟 =
∑(𝑥𝑖 ― 𝑥)(𝑦𝑖 ― 𝑦)

∑ (𝑥𝑖 ― 𝑥)2 ∑ (𝑦𝑖 ― 𝑦)2

Where xi and yi are the ith observations of the variables X and Y. 𝑥 and 𝑦 are 

the mean of X and Y. The Pearson correlation coefficient r ranges from -1 to 1. An r > 

0 indicates that the mean of the continuous variable is higher when the binary variable 

equals 1, demonstrating a positive correlation. Conversely, an r < 0 suggests that the 

mean of the continuous variable is lower when the binary variable equals 1, indicating 

a negative correlation. The closer r is to 1, the stronger the correlation; the closer it is 

to 0, the weaker the correlation.



Point-biserial correlation coefficient

The Point-biserial correlation coefficient is a measure of the correlation between 

a continuous variable and a binary variable. It is a special case of Pearson correlation 

coefficient, which is suitable for the analysis of the relationship between discrete and 

continuous variables of binary classification (0/1).

𝑟 =
𝑋1 ― 𝑋0

𝑠 ∙ 𝑛1 ― 𝑛0

𝑛2

Where 𝑋1 and 𝑋0 are the means of the continuous variables when the binary 

variables are 1 and 0, respectively, s is the population standard deviation of a continuous 

variable, n1 and n0 are the number of samples of 1 and 0 in a binary categorical variable 

and n is the total number of samples (n = n1+n0). The point-biserial correlation 

coefficient r ranges from -1 to 1. An r > 0 indicates that the mean of the continuous 

variable is higher when the binary variable equals 1, demonstrating a positive 

correlation. Conversely, an r < 0 suggests that the mean of the continuous variable is 

lower when the binary variable equals 1, indicating a negative correlation. The closer r 

is to 1, the stronger the correlation; the closer it is to 0, the weaker the correlation.

The p-value reflects the statistical significance of the correlation coefficient:

 p < 0.05: The correlation is considered significant, implying it is unlikely to 

have occurred by chance.

 p ≥ 0.05: The correlation may not be significant, suggesting it could be 

random.

One-way ANOVA

One-way ANOVA is a statistical method used to determine whether there are 

significant differences between the means of three or more independent groups. It 

compares the variance between groups to the variance within groups to evaluate 

whether the grouping factor affects the dependent variable. The ratio of these variances 

is called the F-statistic, calculated as: 

F = 
Between ― Group Variance
Within ― Group Variance

The P-value represents the probability of observing the current F-value or a more 



extreme result under the null hypothesis (that is, assuming that all groups have equal 

means). P ≤ 0.05 means that at least one group has a significantly different mean from 

the others, while P > 0.05 was considered to have no significant difference in the mean 

values of all groups. 

F-Statistic:

 Represents the ratio of variance between groups to variance within groups.

 A higher F-value indicates greater differences between group means relative 

to random noise.

p-Value:

 If p < 0.05, reject the null hypothesis. This means at least one group mean is 

significantly different.

 If p ≥ 0.05, fail to reject the null hypothesis, indicating no significant 

difference between group means.

Lasso regression model

Lasso regression, or Least Absolute Shrinkage and Selection Operator Regression, 

is a type of linear regression that performs both variable selection and regularization to 

improve the accuracy and interpretability of the statistical model it produces. There are 

three key characteristics of Lasso regression, the first one is regularization, which adds 

a penalty term to the loss function to prevent overfitting and handle multicollinearity. 

The second one is featuring selection, which shrinks coefficients of less important 

features to exactly zero, effectively removing them from the model and the last one is 

penalty term, which is based on the L1 norm of the coefficients, encouraging sparsity 

in the model. The objective function for Lasso regression is: 

Minimize: 1
2𝑛∑𝑛

𝑖=1 (𝑦𝑖 ― 𝑦𝑖)2 + 𝜆 ∑𝑝
𝑗=1 |𝛽𝑗|

Where 𝑦𝑖 is actual value, 𝑦𝑖 is predicted value, j is coefficients of the features 

and  is regularization strength (controls the degree shrinkage).

Random forest model

Random Forest (RF) is a versatile ensemble learning method primarily used for 

classification and regression tasks. It is based on constructing a multitude of decision 



trees during training and combining their outputs (majority vote for classification or 

average for regression) to improve predictive performance and reduce overfitting. 

There are also three key features of RF. The first one is ensemble of decision tress. A 

random forest is essentially a collection of decision trees, each tree is trained on a 

randomly sampled subset of the data (with replacement, i.e., bootstrapping). The second 

one is featuring randomness, which means during training, only a random subset of 

features is considered at each split in the tree, this helps reduce correlation among trees 

and increases diversity. The third one is Aggregation: for classification, the final 

prediction is made by majority voting among the trees. For regression, the output is the 

average of the predictions from all trees.

The RF algorithm consists of an ensemble of decision trees. During the tree-

building process, each tree selects features to split the data in a way that maximizes the 

improvement in data purity. Feature importance is calculated based on the average 

contribution of each variable to the reduction in impurity (e.g., root mean squared error) 

across all trees. When a feature is frequently used as a splitting variable and 

significantly reduces prediction error, its importance score increases. In RF, the 

contributions of each feature across all trees are aggregated and normalized. The 

resulting values represent the normalized importance of each feature, typically 

summing to one.

Neural network model

Neural network (NN) model is a machine learning method inspired by the structure 

and functioning of biological neural networks. It is designed to identify complex 

patterns and relationships in data by using a layered structure composed of 

interconnected nodes (neurons). Neural networks are widely used in tasks like 

regression, classification, image recognition, natural language processing, and more. Its 

basic structure can be divided into the following five parts, as listed in Table S1.

Table S1. Five parts of NN.

Structure Explanation

Input layer Accepts the input data, with each feature of the 
data corresponding to one neuron in this layer.



Does not perform computations—simply passes 
the data forward.

Hidden layers

Consist of one or more layers of neurons between 
the input and output layers.
Each neuron applies a mathematical function 
(activation function) to the inputs and passes the 
results to the next layer.
These layers extract and learn features from the 
data.

Output layer

Provides the final predictions or classifications.
For regression, the output is usually a single 
continuous value.
For classification, the output layer size 
corresponds to the number of classes, often with 
a SoftMax function for probabilities.

Connections

Every neuron is connected to the neurons in 
adjacent layers through weights. Each connection 
is assigned a weight that determines its 
importance.

Bias
An additional parameter added to neurons to shift 
the activation function, improving the model’s 
ability to learn



Fig. S1. The schematic diagram of the tandem solar cell structure.
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Fig. S2. Simulated device performance as a function of Si-ICL.
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Fig. S3. Tandem solar cell performance predicted by different models based on dataset of TCO-ICL: 
(a-c) Voc, (d-f) FF, (g-i) Jsc, (j-l) PCE. Models used include Lasso, RF and NN. The dashed line 

represents a perfect fitting, while the solid red line represents the actual fitting result.
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Fig. S4. Tandem solar cell performance predicted by different models based on dataset of Si+TCO-
ICL: (a-c) Voc, (d-f) FF, (g-i) Jsc, (j-l) PCE. Models used include Lasso, RF and NN. The dashed line 

represents a perfect fitting, while the solid red line represents the actual fitting result.
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Fig. S5. Feature importance for dataset of TCO-ICL based on the RF model. (a) Voc, (b) FF, (c) Jsc, (d) 
PCE.
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Fig. S6. Feature importance for dataset of Si+TCO-ICL based on the RF model. (a) Voc, (b) FF, (c) Jsc, 
(d) PCE.
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Table S2. Point-biserial correlation coefficient results of dataset of Si-ICL.

Category Variable Numeric Variables Correlation coefficient r P Value

SM Voc –0.9414323515397796 9.7483407e–99

SM Jsc 0.14571982356195037 0.0361671

SM FF –0.9125988991043305 1.4347159e–81

SM PCE –0.9073200492344362 4.4338796e–79



Table S3. Point-biserial correlation coefficient results of dataset of TCO-ICL.

Category Variables Numeric Variables Correlation coefficient r P Value

SM Voc –0.579666053 4.93e–10

SM Jsc 0.270775911 0.007305854

SM FF –0.563437622 1.87e–9

SM PCE –0.375159162 1.53e–4

PSC Voc 0.637346795 2.23e–12

PSC Jsc 0.31318726 1.79e–3

PSC FF 0.614959877 2.07e–11

PSC PCE 0.64375799 1.14e–12



Table S4. Point-biserial correlation coefficient results of dataset of Si+TCO-ICL.

Category Variable Numeric Variables Correlation coefficient r P Value

SM Voc –0.591615133 8.82e–48

SM Jsc –0.158119715 0.00043071

SM FF –0.687284807 4.91e–70

SM PCE –0.766577847 2.59e–96



Table S5. One-way ANOVA results of dataset of Si+TCO-ICL.

Categorical Variables Numerical Variables F Value P Value

TMO Voc 0.055604 0.994236

TMO Jsc 0.027379 0.998549

TMO FF 0.058606 0.993622

TMO PCE 0.090014 0.985569

PSCH Voc 0.077154 0.998243

PSCH Jsc 0.064096 0.998962

PSCH FF 0.031515 0.999867

PSCH PCE 0.059965 0.999143



Table S6. Details of relevant hyperparameters for the ML models in Si-ICL dataset.
Models Output Features Alpha Max_iter Tol

Voc 0.001 500 10
Jsc 0.01 3000 0.1
FF 0.1 2000 0.01

Lasso

PCE 0.001 500 10
Models Output Features Max_depth N_estimators

Voc 5 400
Jsc 11 200
FF 11 550

RF

PCE 5 550
Models Output Features Alpha Hidden_layer_sizes

Voc 0.001 (50,50)
Jsc 0.001 (100,100)
FF 0.01 (50,50)

NN

PCE 0.01 (100,100)



Table S7. Details of relevant hyperparameters for the ML models in TCO-ICL dataset.
Models Output Features Alpha Max_iter Tol

Voc 0.01 8000 0.1
Jsc 0.08 8000 0.001
FF 0.05 8000 0.001

Lasso

PCE 0.01 8000 0.01
Models Output Features Max_depth N_estimators

Voc 5 200
Jsc 8 100
FF 7 400

RF

PCE 13 200
Models Output Features Alpha Hidden_layer_sizes

Voc 0.1 (100,100)
Jsc 0.0001 (50,50)
FF 0.000001 (50,50)

NN

PCE 0.00001 (100,100)



Table S8. Details of relevant hyperparameters for the ML models in Si+TCO-ICL dataset.
Models Output Features Alpha Max_iter Tol

Voc 0.001 8000 0.01
Jsc 0.1 8000 0.001
FF 1 8000 0.001

Lasso

PCE 0.1 8000 0.01
Models Output Features Max_depth N_estimators

Voc 7 500
Jsc 14 500
FF 8 500

RF

PCE 9 500
Models Output Features Alpha Hidden_layer_sizes

Voc 0.000001 (100,100)
Jsc 0.1 (100,100)
FF 0.1 (50,50)

NN

PCE 0.001 (50,50)



Table S9. Performances of different ML model in the prediction of interconnecting layer of the 
perovskite/silicon heterojunction tandem solar cells in dataset of Si-ICL.

Photovoltaic Parameters ML model RMSE

Lasso 0.015446611151380513

RF 0.015099898358605316Voc

NN 0.1602053538591303

Lasso 0.286992626872376

RF 0.27951616820264574Jsc

NN 1.120907945816788

Lasso 0.9567102056018761

RF 0.8682119604307589FF

NN 3.183064186323462

Lasso 0.6176109384517436

RF 0.5764471184651523PCE

NN 1.9239972952538564

Note: RMSE refer to root mean squared error.



Table S10. Performances of different ML model in the prediction of interconnecting layer of the 
perovskite/silicon heterojunction tandem solar cells in dataset of TCO-ICL.

Photovoltaic Parameters ML model RMSE

Lasso 0.042788177574249193

RF 0.020475879062268873Voc

NN 0.12167004946699936

Lasso 0.6108993088784077

RF 0.36550811937001726Jsc

NN 1.2081575596461083

Lasso 1.8687498275760739

RF 1.3873067486307413FF

NN 4.827784352395491

Lasso 1.2841844521563393

RF 1.2143686975396648PCE

NN 1.9579579108977

Note: RMSE refer to root mean squared error.



Table S11. Performances of different ML model in the prediction of interconnecting layer of the 
perovskite/silicon heterojunction tandem solar cells in dataset of Si+TCO-ICL.

Photovoltaic Parameters ML model RMSE

Lasso 0.059321347021387714

RF 0.0544010083819987Voc

NN 0.17480281827306443

Lasso 0.9267432287180262

RF 0.7116399034301324Jsc

NN 1.271500876890284

Lasso 5.419571813587112

RF 4.16788514484323FF

NN 5.552792000546463

Lasso 2.2687260161718403

RF 1.7919828243834686PCE

NN 2.4296643153898856

Note: RMSE refer to root mean squared error.


