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Abstract: The possibility to induce a macroscopic magnetic moment in lead halide perovskites (LHPs), combined with their ex-
cellent optoelectronic properties, is of fundamental interest and has promising spintronic applications. However, these possibilit-
ies remain an open question in both theory and experiment. Here, theoretical and experimental studies are performed to ex-
plore ferromagnetic states in LHPs originated from lattice defects. First-principle calculations reveal that shallow-level Br vacan-
cies in defective CsPbBr; can produce spin-splitting states and the coupling between them leads to a ferromagnetic ground
state. Experimentally, ferromagnetism at 300 K is observed in room-temperature synthesized CsPbBr; nanocrystals, but is not ob-
served in hot-injection prepared CsPbBr; quantum dots and in CsPbBr3 single crystals, highlighting the significance played by va-
cancy defects. Furthermore, the ferromagnetism in the CsPbBr; nanocrystals can be enhanced fourfold with Ni?+ ion dopants,
due to enhancement of the exchange coupling between magnetic polarons. Room-temperature ferromagnetism is also ob-
served in other LHPs, which suggests that vacancy-induced ferromagnetism may be a universal feature of solution-processed
LHPs, which is useful for future spintronic devices.
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Fig. S1. (Color online) Magnetic properties of CsPbBr; quantum dots and single crystals. Pristine magnetization versus external magnetic field
(Hexy) curves of (a) hot-injection synthesized CsPbBr; quantum dots and (b) CsPbBr3 single crystals. Insets show corresponding sample morpho-
logy. Only linear diamagnetic background signals are observed in the two curves.
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Fig. S2. (Color online) ESR characterization. First derivative of the ESR signals of room-temperature synthesized CsPbBr; nanocrystals, hot-injec-
tion synthesized CsPbBr; quantum dots, and CsPbBr; single crystals. These three samples had the same weight of 10.2 mg for the ESR measure-
ment. The integrated resonance peak areas of the CsPbBr; quantum dots and the CsPbBr; single crystal were 50% smaller than that of the CsPb-
Brs nanocrystals, indicating a decrease of Vg, concentration in the former two samples.
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Fig. S3. (Color online) Structural and optical characterization of some LHPs. XRD patterns and photoluminescence (PL) spectra of room-temperat-
ure synthesized (a, b) CsPbCls, (c, d) CsPbls, and (e, f) CH3NH3PbBr;. The CsPbCl; and CsPbl; were indexed as tetragonal (PDF#18-0366) and or-
thorhombic (PDF#18-0376)-phase structures, respectively. The CH;NH;PbBr; was found to have cubic-phase structures!'l. The optical gaps of CsPb-
Cl; and CH3NHsPbBr; were 3.05 and 2.39 eV, respectively. No emission was found in the PL spectrum of the orthorhombic-phase CsPbl; (also
known as yellow-phase CsPbls), consistent with previous reports(2l, All measurements were carried out at room temperature.
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Fig. S4. Magnetic properties of hot-injection-synthesized LHPs. Pristine magnetization versus He,; curves of (a) CsPbCls;, (b) CsPbls;, and
(c) CH3NH3PbBr3, measured at 300 K. Only linear diamagnetic background signals were observed in the three curves.
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Fig. S5. XRD patterns of 3d ion-doped CsPbBr; synthesized at room temperature. The designed molar ratios of the Mn, Fe, Co, Cu, and Zn
dopants, relative to Pb, were 15%. As shown in Table S1, the real molar ratio of the Mn, Fe, Co, Cu, and Zn relative to Pb were determined to be
1.7%, 0.54%, 0.87%, 0.35%, and 0.86%, respectively. The bottom blue vertical lines index the XRD patterns of CsPbBr; with a cubic-phase struc-
ture (PDF#54-0752). The Bragg angle, 6, shifts to a higher position after doping, indicating that the Mn, Fe, Co, Cu, and Zn dopants were success-
fully incorporated into the Pb sites.
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Fig. S6. (Color online) Magnetization curves of Ni-doped CsPb,_,Ni Br; synthesized by hot injection. Here, y is the designed molar ratio of Ni relat-

ive to Pb. Only linear diamagnetic background signals were observed in the curve with y = 5%. The curves with y=7%, 10%, 15%, 17%, and 20%
showed paramagnetic behaviors. The measuring temperature was 300 K.

Table S1. Determination of dopant concentrations. Designed and real molar ratios of transition-metal (TM) ions relative to Pb ions in TM-doped
CsPbBr; nanocrystals synthesized at room temperature. The real molar ratios were determined by inductively coupled plasma mass spectro-
metry.

TM dopant Designed Real
0% 0%
5% 0.07%
8% 0.09%
Ni 10% 0.12%
12% 0.22%
15% 0.31%
17% 0.42%
20% 0.46%
Mn 15% 1.7%
Fe 15% 0.54%
Co 15% 0.87%
Cu 15% 0.35%
Zn 15% 0.86%
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