Supporting Information

Boosting photoelectrochemical performance on α -Ga₂O₃ nanowire arrays by indium cation doping for self-powered ultraviolet detection

Junjun Xue^{1,‡}, Jiyuan Huang^{1,‡}, Kehan Li², Ping Liu², Yan Gu³, Ting Zhi¹, Yan Dong^{4,†}, and Jin Wang^{1,†}

¹College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China

²School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

³College of Integrated Circuit Science and Engineering (College of Industry-Education Integration), Nanjing University of Posts and Telecommunications, Nanjing 210023, China

⁴School of Electronic Engineering, Heilongjiang University, Harbin, 150080, China

Fig. S1. (Color online) Current density-time curves of samples with different indium doping ratios.

Fig. S2. (Color online) Tauc plots of the three sample groups.

The Tauc plot is used to determine the band gap energy (E_g) of a material by plotting the relationship between the absorption coefficient (α) and photon energy (hv). The band gap energy is typically determined by extrapolating the linear portion of the plot. The expression for the Tauc plot is:

$$(\alpha h_{\rm V})^2 = A(h_{\rm V} - E_g)$$
 S1

Where α is the absorption coefficient, *h* is Planck's constant, *v* is the frequency of the incident light, E_g is the bandgap energy, and *A* is a constant.

Fig. S3. (Color online) (a) Top-view scanning electron microscopy (SEM) image of indium-doped α -Ga₂O₃ samples. (b) Cross-sectional SEM image of indium-doped α -Ga₂O₃ samples. (c) Oxygen (O) elemental mapping of the indium-doped samples. (d) Gallium (Ga) elemental mapping of the indium-doped samples. (e) Indium (In) elemental mapping of the indium-doped samples.

Table S1. Performance	Comparison of	Ga ₂ O ₃ -based	Ultraviolet Ph	notodetectors fi	rom Previou	s Reports.

Structures	Туре	Light condition	R(mA/W)	$\tau_{rise} / \tau_{decay}(ms)$	Ref
β-Ga ₂ O ₃	PEC PD	254 nm	3.81	290/160	[1]
α -Ga ₂ O ₃	PEC PD	254 nm	0.21	76/56	[2]
Al: α -Ga ₂ O ₃	PEC PD	260 nm	1.46	421/139	[3]
α-Ga ₂ O ₃ /CFP	PEC PD	254 nm	12.9	150/130	[4]
α -Ga ₂ O ₃ - γ -Al ₂ O ₃	PEC PD	254 nm	0.174	100/100	[5]
α -Ga ₂ O ₃ /Cu ₂ O QDs	PEC PD	254 nm	4.57	810/970	[6]
$\alpha\text{-}GaOOH/\alpha\text{-}Ga_2O_3$	PEC PD	250 nm	0.29	240/60	[7]
α -Ga ₂ O ₃ /ZnS	PEC PD	310 nm	12.9	59/18	[8]
SnO_2/α - Ga_2O_3	PEC PD	265 nm	5.94	17/18	[9]
α -Ga ₂ O ₃ /ZnO	PEC PD	254 nm	34.2	250/180	[10]
α -Ga ₂ O ₃	PEC PD	255 nm	11.75	54/11	this work
In: α-Ga ₂ O ₃	PEC PD	255 nm	38.85	13/8	this work

Reference

- [1] Chen K, Wang S L, He C R, et al. Photoelectrochemical self-powered solar-blind photodetectors based on Ga₂O₃ nanorod array/electrolyte solid/liquid heterojunctions with a large separation interface of photogenerated carriers. ACS Appl Nano Mater, 2019, 2(10), 6169
- [2] Zhang J H, Jiao S J, Wang D B, et al. Solar-blind ultraviolet photodetection of an α-Ga₂O₃ nanorod array based on photoelectrochemical self-powered detectors with a simple, newly-designed structure. J Mater Chem C, 2019, 7(23), 6867
- [3] Guo J C, Sun G W, Fan M M, et al. Hydrothermal growth of an Al-Doped α-Ga₂O₃ nanorod array and its application in self-powered solar-blind UV photodetection based on a photoelectrochemical cell. Micromachines, 2023, 14(7), 1336
- [4] Huang L J, Hu Z R, Zhang H, et al. A simple, repeatable and highly stable self-powered solar-blind photoelectrochemical-type photodetector using amorphous Ga₂O₃ films grown on 3D carbon fiber paper. J Mater Chem C, 2021, 9(32), 10354
- [5] Zhang J H, Jiao S J, Wang D B, et al. Nano tree-like branched structure with α-Ga₂O₃ covered by γ-Al₂O₃ for highly efficient detection of solar-blind ultraviolet light using self-powered photoelectrochemical method. Appl Surf Sci, 2021, 541, 148380
- [6] Han P P, Kang T X, Chen W H, et al. Cu₂O quantum dots modified α-Ga₂O₃ nanorod arrays as a heterojunction for improved sensitivity of self-powered photoelectrochemical detectors. J Alloys Compd, 2023, 952, 170063
- [7] Zhang Y A, Jiao S J, Zhang J H, et al. Study on the evolution from α -GaOOH to α -Ga₂O₃ and solar-blind detection behavior of an α -GaOOH/ α -Ga₂O₃ heterojunction. CrystEngComm, 2022, 24(9), 1789
- [8] Chang Y Y, Fan M M, Xu X J, et al. A fast-speed self-powered ZnS nanoparticles/α-Ga₂O₃ nanorod array/FTO UV photodetector based on a photoeletrochemical cell for outdoor UV detection. Chem Phys Lett, 2023, 832, 140879
- Chen H Y, Huang Y C, Yao R H, et al. High-responsivity photoelectrochemical ultraviolet photodetector based on SnO₂ nanosheets-Ga₂O₃. J Phys D: Appl Phys, 2024, 58(2), 025103
- [10] Liu W J, Deng J R, Zhang D, et al. Construction of α -Ga₂O₃-ZnO heterojunction for a promoted performance applied in self-powered solar blind photodetector. Eur Phys J Appl Phys, 2022, 97, 57