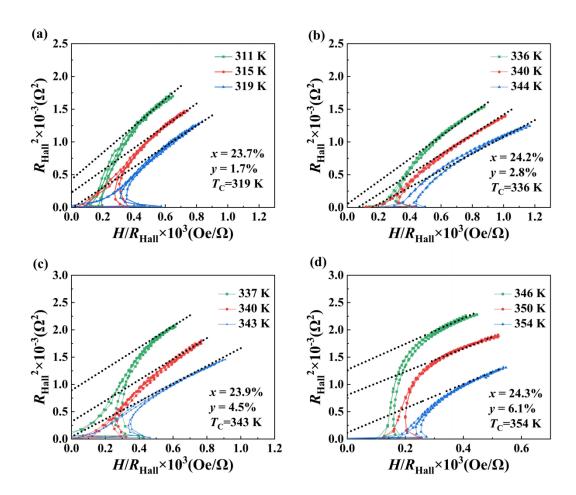
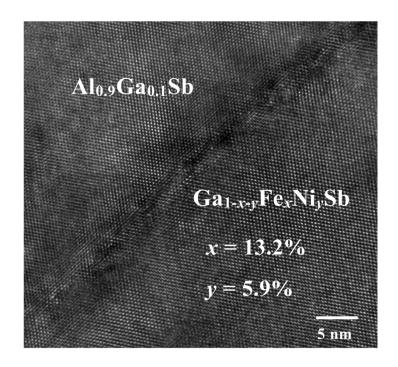
Supplementary Information


Enhanced magnetic anisotropy and high hole mobility in magnetic semiconductor $Ga_{1-x-y}Fe_xNi_ySb$

Zhi Deng 1,2 , Hailong Wang 1,2,† , Qiqi Wei 1,2 , Lei Liu 1,2 , Hongli Sun 1,2 , Dong Pan 1,2 , Dahai Wei 1,2 , and Jianhua Zhao 1,2


¹State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China

²Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China

Supplementary Figures

Supplementary Figure S1. a-d, Arrott plots of the R_{Hall} -H characteristics of samples B1-B4 ($x\approx24\%$, y=1.7-6.1%).

Supplementary Figure S2. A clear STEM image of sample S1 with low impurity concentration (x=13.2%, y=5.9%). When Fe concentration is over 20%, the ferromagnetism of $Ga_{1-x-y}Fe_xNi_ySb$ existed at 300 K would make great influence on the STEM images. Thus, a clear STEM image could only be obtained at the films with low doping concentration.