D18, an eximious solar polymer!

Ke Jin, Zuo Xiao†, and Liming Ding†

Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China

Citation: K Jin, Z Xiao, and L M Ding, D18, an eximious solar polymer![J]. *J. Semicond.*, 2021, 42(1), 010502. http://doi.org/10.1088/1674-4926/42/1/010502

SUPPORTING INFORMATION

1. Device fabrication and measurements

A 30 nm thick PEDOT:PSS layer was made by spin-coating an aqueous dispersion onto ITO glass (4000 rpm for 30 s). PEDOT:PSS substrates were dried at 150 °C for 10 min. A D18:N3 (1 : 1.6, 12.5 mg/mL) blend in chloroform (CF) with 0.15 vol% CN additive was spin-coated onto PEDOT:PSS layer. PDIN (2 mg/mL) in MeOH:AcOH (1000 : 3) was spin-coated onto active layer (5000 rpm for 30 s). Ag (\sim 80 nm) was evaporated onto PDIN through a shadow mask (pressure ca. 10^{-4} Pa). The effective area for the devices is 4 mm². The thicknesses of the active layers were measured by using a KLA Tencor D-120 profilometer. *J-V* curves were measured by using a computerized Keithley 2400 SourceMeter and a Xenon-lamp-based solar simulator (Enli Tech, AM 1.5G, 100 mW/cm²). The illumination intensity of solar simulator was determined by using a monocrystalline silicon solar cell (Enli SRC2020, 2×2 cm²) calibrated by the National Institute of Metrology (NIM). The external quantum efficiency (EQE) spectra were measured by using a QE-R3011 measurement system (Enli Tech). The best cells were further tested at NIM for certification. A metal mask with an aperture (2.580 mm²) was used to define the effective area.

2. Optimization of device performance

Table S1. Optimization of D/A ratio for D18:N3 solar cells^a.

D/A (w/w)	$V_{oc}(V)$	J_{sc} (mA/cm ²)	FF (%)	PCE (%)
1:0.8	0.855	25.90	71.9	15.93 (15.49) ^b
1:1.2	0.854	26.64	75.6	17.21 (17.13)
1:1.6	0.854	26.52	77.4	17.53 (17.45)
1:2	0.855	26.23	74.4	16.68 (16.58)

*Blend solution: 12.5 mg/mL in CF; spin-coating: 4500 rpm for 30 s. *Data in parentheses stand for the average PCEs for 10 cells.

Table S2. Optimization of the active layer thickness for D18:N3 solar cells^a.

Thickness (nm)	V _{oc} (V)	J_{sc} (mA/cm ²)	FF (%)	PCE (%)
143	0.847	27.21	76.2	17.56 (17.51) ^b
121	0.848	27.35	76.9	17.83 (17.78)
112	0.849	26.59	78.1	17.62 (17.46)
105	0.853	26.52	77.4	17.53 (17.45)
95	0.855	26.18	77.5	17.36 (17.09)

*D/A ratio: 1:1.6 (w/w); blend solution: 12.5 mg/mL in CF. *Data in parentheses stand for the average PCEs for 10 cells.

Table S3. Optimization of CN content for D18:N3 solar cells^a.

CN (vol%)	$V_{\rm oc}$ (V)	J_{sc} (mA/cm ²)	FF (%)	PCE (%)
0	0.848	27.35	76.9	17.83 (17.78) ^b
0.1	0.859	27.34	77.5	18.21 (18.06)
0.15	0.862	27.44	78.5	18.56 (18.30)
0.2	0.869	26.49	78.4	18.05 (17.97)
0.25	0.876	25.96	77.9	17.70 (17.62)

^aD/A ratio: 1 : 1.6 (w/w); blend solution: 12.5 mg/mL in CF; spin-coating: 3500 rpm for 30 s.

^bData in parentheses stand for the average PCEs for 10 cells.

Correspondence to: Z Xiao, xiaoz@nanoctr.cn; L M Ding, ding@nanoctr.cn Received 26 DECEMBER 2020.

3. *J-V*

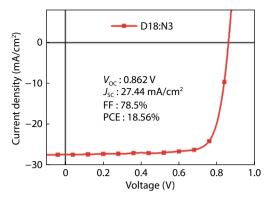


Fig. S1. The *J–V* curve for D18:N3 solar cells.

4. EQE

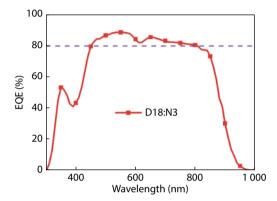


Fig. S2. The EQE spectrum for D18:N3 solar cells.