Appendix A: Calculation of band parameters

The valence band of wurtzite GaN is split into three, namely, heavy hole (hh) band, light hole (lh) band and crystal-field split-hole (ch) band.^[28] The effective mass for the density of states m_{Xh}^{dos} and the effective mass m_{Xh}^{*} in each band (Xh represents hh, lh or ch) is given by

$$m_{\rm Xh}^{\rm dos} = (m_{\rm Xh}^{\parallel} \times m_{\rm Xh}^{\perp} \times m_{\rm Xh}^{\perp})^{1/3} \quad , \tag{A1}$$

and
$$m_{\rm Xh}^* = 3 \left(\frac{1}{m_{\rm Xh}^{\parallel}} + \frac{1}{m_{\rm Xh}^{\perp}} + \frac{1}{m_{\rm Xh}^{\perp}} \right)^{-1}$$
, (A2)

where m_{Xh}^{\parallel} and m_{Xh}^{\perp} represent the components of the hole effective mass in the k_z direction and in the $k_x k_y$ plane, respectively.

Therefore, the effective mass for the density of states in valence band, $m_{\rm h}^{\rm dos}$ considering the occupation probability of each band can be expressed by

$$m_{\rm h}^{\rm dos} = \left[(m_{\rm hh}^{\rm dos})^{3/2} + (m_{\rm lh}^{\rm dos})^{3/2} \times \exp\left(-\frac{\Delta_2}{kT}\right) + (m_{\rm ch}^{\rm dos})^{3/2} \times \exp\left(-\frac{\Delta_1}{kT}\right) \right]^{2/3},\tag{A3}$$

where $\Delta_1 = \Delta_{cr}$ is the crystal-field splitting and $\Delta_2 = 1/3\Delta_{so}$ (Δ_{so} is spin-obit splitting).

The effective density of state of valence band $N_{\rm V}$ is expressed by

$$N_{\rm V} = 2(2\pi m_{\rm h}^{\rm dos} kT/h^2)^{3/2}.$$
 (A4)

And, acceptor degeneracy factor g is obtained by summing over the degeneracy factors (each being 2) of individual bands weighted with the appropriate Boltzmann factors giving

$$g = 2 \times \left[1 + \exp\left(-\frac{\Delta_2}{kT}\right) + \exp\left(-\frac{\Delta_1}{kT}\right)\right].$$
 (A5)

The influence of three valence bands is again considered. The proportion of holes in each band is related to the effective density of state and the occupation probability. Therefore, m_h^* is expressed as

$$m_{\rm h}^{*} = \frac{m_{\rm hh}^{*} \times (m_{\rm hh}^{\rm dos})^{\frac{3}{2}} + m_{\rm lh}^{*} \times (m_{\rm lh}^{\rm dos})^{\frac{3}{2}} \times \exp\left(-\frac{\Delta_{2}}{kT}\right) + m_{\rm ch}^{*} \times (m_{\rm ch}^{\rm dos})^{\frac{3}{2}} \times \exp\left(-\frac{\Delta_{1}}{kT}\right)}{(m_{\rm hh}^{\rm dos})^{\frac{3}{2}} + (m_{\rm lh}^{\rm dos})^{\frac{3}{2}} \times \exp\left(-\frac{\Delta_{2}}{kT}\right) + (m_{\rm ch}^{\rm dos})^{\frac{3}{2}} \times \exp\left(-\frac{\Delta_{1}}{kT}\right)}.$$
 (A6)

All the band parameters above are calculated based on 3D fit values reported by Yeo *et al.*^[28] and listed in Table A-1.

Table A-1. Band parameters calculated based on 3D fit values in Ref. 28.

-	$m_{ m hh}^{*}$	$m_{ m lh}^{*}$	$m_{\rm ch}^{*}$	<i>m</i> _h *	$m_{\rm hh}^{\rm dos}$	$m_{\rm lh}^{\rm dos}$	$m_{\rm ch}^{\rm dos}$	<i>m</i> h ^{dos}	$N_{ m V}$	g
_	(m_0)	(m_0)	(m_0)	(m ₀)	(m_0)	(m_0)	(m_0)	(m_0)	(cm ⁻³)	
	1.90	0.20	0.37	1.65	1.90	0.34	0.81	2.13	7.78×10 ¹⁹	4.62