Synthesis of P-Type PbS Quantum Dot Ink via Inorganic Ligand Exchange in Solution for High-Efficiency and Stable Solar Cells

Napasuda Wichaiyo¹, Yuyao Wei^{1,†}, Chao Ding^{1,†,*}, Guozheng Shi¹, Witoon Yindeesuk², Liang Wang¹, Huān Bi¹, Jiaqi Liu¹, Shuzi Hayase¹, Yusheng Li¹, Yongge Yang¹, and Qing Shen^{1,†}

¹ Graduate School of Engineering Science, The University of Electro-Communications, Tokyo 1828585, Japan

² School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Corresponding authors:

†Yuyao Wei	Email: <u>wyyelsa@gmail.com</u>
[†] Chao Ding	Email: <u>dc1107@scu.edu.cn</u>
[†] Qing Shen	Email: <u>qingshen3@yahoo.co.jp</u>

Fig. S1. PbS-PbX₂ ink and PbS-PbX₂/SnI₂ 1%-3% inks (left to right) were dispersed in mixed-amine

Fig. S2. XPS spectra of Sn 3d region of (a) PbS-PbX₂/SnI₂ 1%, (b) PbS-PbX₂/SnI₂ 2%, and (c) PbS-PbX₂/SnI₂ 3% with two components of Sn²⁺ (blue dash line) and Sn⁴⁺ (orange dash line)

Table S1. The area ratio of	Sn ²⁺ and Sn ⁴⁺ components	in PbS-PbX ₂ /SnI ₂ samp	oles (mixin	$g SnI_2 (1\%-3\%)$
			(

Samples	Oxidation state	Centre (eV)	Intensity (eV)	Area (cps*eV)	Ratio [*] (%)
PbS-PbX ₂ /SnI ₂ 1%	Sn^{2+}	485.8	159.1	306.6	
		494.4	96.0	169.3	100
PbS-PbX ₂ /SnI ₂ 2%	Sn^{2+}	486.1	291.6	525.2	
		494.4	146.3	241.3	55.28
	Sn ⁴⁺	486.9	94.4	132.6	
		495.3	114.1	195.2	44.72
PbS-PbX ₂ /SnI ₂ 3%	Sn^{2+}	486.3	738.7	1451.1	
		494.6	419.9	704.9	75.42
	S = 4+	487.3	52.4	52.9	
	511	495.5	134.8	229.8	24.58

*The area ratio of Sn²⁺ and Sn⁴⁺ component of Sn 3d₃/₂ peak, denoted as X, was determined using the formula:

Ratio (%) =
$$(\frac{X}{\text{Sn}^{2+} + \text{Sn}^{4+}}) \times 100$$

Where X is the area of Sn^{2+} or Sn^{4+} .

Fig. S3. The hall coefficient of mixing SnX_2 (X = I, Br, Cl) and SnI_4 at 3% (The dots show average values, and the error bars represent the top and lower margins of the 95% confidence interval.)

- - - - Ligand solution level

Samples	Pb/S	Sn/S	I/S	Br/S
PbS-PbX ₂	1.963	0	0.686	0.217
PbS-PbX ₂ /SnI ₂ 1%	2.062	0.054	0.714	0.233
PbS-PbX ₂ /SnI ₂ 2%	2.121	0.156	0.720	0.251
PbS-PbX ₂ /SnI ₂ 3%	2.164	0.297	0.763	0.269

Fig. S5. XPS spectra Pb 4f region of (a) PbS-PbX₂, (b) PbS-PbX₂/SnI₂ 1%, (c) PbS-PbX₂/SnI₂ 2%, (d) PbS-PbX₂/SnI₂ 3%, and (e) PbS-PbX₂/SnI₂ 4%

Fig. S6. The schematic structure of the (a) control device (PbS-EDT HTL), (b) target device (p-type PbS ink HTL)

Fig. S7. The comparison J-V characteristics of champion device based on PbS-PbX₂/SnI₂ (1%-4%) HTLs at the fresh state

	Device	J _{sc} [mA/cm ²]	V _{oc} [V]	FF	PCE [%]
Fresh state —	C + 1	26.22±1.26	0.63±0.01	0.54±0.01	9.31±0.33
	Control	(29.44)	(0.63)	(0.53)	(10.54)
	T	25.39±0.49	0.63±0.01	0.57±0.01	9.60±0.27
	larget	(25.15)	(0.64)	(0.61)	(10.37)
		26.74±0.55	0.61±0.01	0.57±0.02	9.69±0.14
1 1	Control	(29.58)	(0.63)	(0.52)	(10.42)
I week storage	T. (26.79±0.60	0.62±0.01	0.57±0.01	9.95±0.13
	larget	(28.20)	(0.60)	(0.60)	(10.81)
4 weeks storage —	C (1	27.28±0.85	0.61±0.01	0.51±0.02	8.93±0.36
	Control	(30.18)	(0.61)	(0.50)	(9.83)
	T. (26.91±0.75	0.62±0.01	0.59±0.01	10.33±0.12
	Target	(29.57)	(0.61)	(0.58)	(10.93)
6 weeks storage —	Control	28.58±0.24	0.61±0.01	0.45 ± 0.03	7.87±0.63
		(29.11)	(0.61)	(0.55)	9.78
	Target	26.92±0.66	0.61±0.01	0.54±0.01	8.98±0.35
		(28.83)	(0.61)	(0.58)	(10.30)
8 weeks storage —		26.69±0.85	0.59±0.01	0.47±0.01	7.37±0.37
	Control	(27.60)	(0.59)	(0.51)	(8.24)
	T. (25.73±0.47	0.60±0.01	0.53±0.01	8.12±0.29
	Target	(27.70)	(0.60)	(0.57)	(9.38)

Table S3. Statistics for device performance of PbS CQD solar cells and champion device

* Results of J_{sc} , V_{oc} , FF, and PCE for the champion devices are shown in parentheses. The statistics are based on 8 cells for each condition.