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SUPPORTING INFORMATION

Experimental section

Device fabrication

The  ITO  substrates  (15  Ω  sq–1)  were  washed  by  deter-
gent, and then cleaned with deionized water, acetone and iso-
propanol  for  15  min.  each,  followed  by  a  UV-ozone  treat-
ment  for  15  min.  The  SnO2 nanoparticle  solution  (Alfa  Aesar)
was  diluted  to  2.5%  with  deionized  water,  and  then  spin-
coated  onto  the  ITO  glasses  at  a  speed  of  3000  rpm  for  30  s.
The  SnO2/ITO  samples  were  annealed  at  150  °C  for  30  min.
After  cooling  down  to  room  temperature,  these  samples
were  further  treated  with  UV-ozone  for  10  min,  then  trans-
ferred  to  a  nitrogen-filled  glovebox.  The  CsPbI2Br  solution
was  prepared  by  dissolving  CsI  (0.8  mmoL),  PbI2 (0.4  mmoL),
and PbBr2 (0.4  mmoL)  in  1  mL DMF/DMSO mixed solvent  (4  :
1,  v/v).  The  solution  was  heated  at  60  °C  for  4  h.  After  filter-
ing  with  a  0.22 μm  PTFE  filter,  the  solution  was  spin-coated
onto  the  SnO2/ITO  substrates  at  2700  rpm  for  30  s,  and  an-
nealed at  250 °C for  10 min.  PVK and PTAA were dissolved in
chlorobenzene  with  the  same  concentration  of  10  mg  mL–1.
A  certain  amount  of  PVK  solution  was  added  into  the  PTAA
solution  to  prepare  PTAA  films  with  0%,  5%,  7.5%,  and  10%
of PVK. After stirring overnight, the PTAA: x% PVK mixture solu-
tion  was  spin-coated  onto  perovskite  layer  and  annealed  at
100  °C  for  10  min.  Finally,  MoO3 (~6  nm)  and  Ag  (~80  nm)
were sequentially evaporated onto the HTL layer in a thermal
evaporator (Pudi Vacuum). The effective area is 8 mm2.

Characterization

For  the  current  density–voltage  (J–V)  characterizations,  a
Newport xenon 300 W lamp was used to provide a light intens-
ity of 100 mW cm–2, which was calibrated with a certified silic-
on  photodiode  (Hamamatsu). J–V curves  were  characterized
by  using  a  Keithley  2450  source  meter.  A  QE-R  solar  cell
quantum  efficiency  measurement  system  developed  by  Enli
Technology  was  employed  to  obtain  external  quantum  effi-

ciency  spectra  at  a  given  frequency  of  210  Hz.  A  Bruker  D8
ADVANACE X-ray diffractometer was used to acquire X-ray dif-
fraction  (XRD)  patterns  with  a  Cu-Kα radiation  source  (λ  =
1.5418 Å). A double beam electron microscope (FEI Helios Nan-
oLab G3 UC) was used to conduct morphological imaging char-
acterization  at  2  kV.  Thermo  scientific  Evolution  201  UV–vis-
ible spectrophotometer was employed to measure UV–vis ab-
sorption spectra.  The electrochemical  workstation (Ivium Ver-
tex,  Netherland)  was  used  to  obtain  Nyquist  plots  at  0.7  V  in
dark.  Helium  Iα  excitation  source  of  21.22  eV  at  5  V  was  ap-
plied  to  obtain  ultraviolet  photoelectron  spectroscopy  with
spectra  Photoelectron  Spectrometer  (SPCES-Lab).  The  transi-
ent  photocurrent  (TPC)  spectrum  excited  by  nitrogen  laser
(337  nm,  nl100,  Stanford)  was  recorded  by  digital  oscillo-
scope (dso-x3104a, Agilent). The impedance is 50 Ω.

To  further  verify  the  charge  recombination  loss  in  our
devices,  the  electrochemical  impedance  spectroscopy  (EIS)
measurements were conducted to unveil the charge recombin-
ation  loss  in  the  bulk  of  CsPbI2Br  layer  and  the  charge  trans-
fer  properties  at  the  PTAA/CsPbI2Br  interface. Fig.  S9 shows
Nyquist  plots  acquired  from  the  devices  based  on  the  PTAA-
only  and  PTAA:  7.5%  PVK  layers.  The  equivalent  circuit  mod-
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Fig. S1. SEM image of CsPbI2Br film.
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el  as  illustrated  in  the  inset  of Fig.  5(c) was  employed  to  fit
the Nyquist plots, which contains two primary interfaces with
a  selective  contact  resistance  (RSC)  and  a  charge  recombina-

tion resistance (RREC)[1].  The fit  results  are  listed in Table  S2.  It
is  shown  that  as  compared  to  the  PTAA-only  device  the RSC

was reduced from 624 to 282 Ω while the RREC increased from

Table 1.   Device parameters from Fig. S4.

HTL Jsc (mA cm–2) Voc (V) FF (%) PCE (%)

PTAA 14.4 1.10 70 11.0
PTAA (5% PVK) 14.1 1.18 77 12.8
PTAA (7.5% PVK) 14.5 1.19 79 13.6
PTAA (10% PVK) 14.4 1.18 78 13.2

Table 2.   Fitting results of Nyquist plots.

HTL RS (Ω) RSC (Ω) RREC (kΩ)

PTAA 30 624 1.312
PTAA (7.5% PVK) 22 282 3.491
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Fig. S2. XRD pattern for CsPbI2Br film.
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Fig. S3. (a) UV–visible absorption and PL spectra for CsPbI2Br film. (b) Estimation of optical bandgap.
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Fig. S4. J–V curves for CsPbI2Br solar cells with PTAA HTL with different PVK content.
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1.312 kΩ to 3.491 kΩ with mixing 7.5% PVK into the PTAA lay-
er.  Such  observation  firmly  proved  that  the  electron-hole  re-
combination loss  was reduced in  the CsPbI2Br perovskite  lay-
er  and  the  charge  transfer  efficiency  was  improved  at  the
PTAA/CsPbI2Br interface.
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Fig. S5. Device performance change with PVK content.
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Fig. S6. The EQE spectrum and integrated current density for the solar cell with PTAA (7.5% PVK) HTL.
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Fig. S7. J–V curves for the solar cell with PTAA (7.5% PVK) HTL.
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Fig. S8. Steady-state current and stabilized PCE at 0.99 V bias.
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Fig. S9. Electrochemical impedance spectra (EIS) acquired from PTAA device and PTAA (7.5% PVK) device.
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Fig. S10. J–V curves obtained under different light intensity for devices with (a) PTAA and (b) PTAA (7.5% PVK).
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Fig. S11. Voc vs light intensity plots for PTAA device and PTAA (7.5% PVK) device.
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Fig. S12. Jsc vs light intensity plots for PTAA device and PTAA (7.5% PVK) device.
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