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Abstract: To improve the accuracy and speed in cycle-accurate power estimation,this paper uses multiple dimensional co-

efficients to build a Bayesian inference dynamic power model. By analyzing the power distribution and internal node state,

we find the deficiency of only using port information. Then, we define the gate level number computing method and the

concept of slice,and propose using slice analysis to distill switching density as coefficients in a special circuit stage and par-

ticipate in Bayesian inference with port information. Experiments show that this method can reduce the power-per-cycle

estimation error by 21. 9% and the root mean square error by 25. 0% compared with the original model, and maintain a

700 + speedup compared with the existing gate-level power analysis technique.
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1 Introduction

Power estimation is the basis of low power de-
sign, in which dynamic power estimation composes
the main part. Input signal changes bring charge and
discharge in node capacity and result in dynamic pow-
er dissipation. The dynamic power aroused by a pair

of input vectors (x;,x,) can be computed as:
N

P = LfVi D) Con,Cxiax) (D
i=1

In Eq. (1), voltage V4 and frequency f usually
are easy to estimate, N is the total number of nodes,
C,; and n;(x,,x,) are the capacity of node i and the
switching number caused by the vector pair (x,, x,)
at node i,respectively. Measuring these two parame-
ters is the main difficulty of dynamic power estima-

tion.
Traditionally, estimated
through simulation and computed based on the switc-
hing activity record of all nodes™''. Those methods are
time consuming, though result in good accuracy. Dif-
fering from simulation based methods, analytical
methods study the relationship between dynamic pow-
er and circuit characteristics, which avoid slow analy-
sis due to massive computation for all nodes™ > . Ref-

dynamic power is

erence [ 2] used coefficients to build a look-up table
and computed average dynamic power, but could not
compute cycle-accurate power. Though References
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[3~5] built a cycle-accurate power macro-model, the
building process and format in Refs.[3,4] are com-
plicated,and the model in Ref.[5] only describes the
power as a linear function of switching activity, which
predigests too much. References [6,7] used Bayesian
networks to build models, but these models only sup-
port average switching activity computing,and trans-
forming from a gate list to a direct acyclic graph
brings massive computing and memory loads. Refer-
ences [ 8,9] used neural networks to build cycle-accu-
rate power models, but because the establishment of
the coefficients depends on circuit structure and pow-
er dissipation, the node analysis makes it lack good
scalability or the model only investigates the switc-
hing density of the input and output signals but ig-
nores abundant internal states.

Based on analysis of signal temporal and spatial
correlation, Reference [10] proposed a build dynamic
power model using port coefficients and calculated
power dissipation by Bayesian inference. To optimize
a cycle-accurate dynamic power model accuracy, this
paper diagnoses the error in Ref. [10], analyses the
power distribution and internal node state under fixed
port coefficients, and demonstrates the deficiency of
only using port information. Then,we define the con-
cept of slice, propose distilling circuit internal coeffi-
cients by slice analysis techniques,and build a Bayes-
ian inference model with port information. The ex-
periments upon ISCAS85 show that this method can,
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compared with Ref. [10], reduce the power-per-cycle
estimation error by 21.9%, the root mean square
(RMS) error by 25. 0% ,and maintain 700 + speedup
compared with the existing gate-level power analysis
technique.

2 Bayesian power model

We introduce a coefficients-based
Bayesian inference dynamic power model, which is
the basis of this paper.
Ref.[10].

multiple

Details can be found in

2.1 Bayesian classification and Bayesian theory

Sample space S is composed of eigenspace I and
class space C:S ={s,,585,°*»5,) = <(I,C),each in-
stance is a Descartes product with m characteristics: [
={P,, Py, -, P, »,cigen characteristics is discrete
value Dii, (i=1,2,:-,m),and class can be [ discrete
values C={C;,Cy,+-,C,}.The essence of the classi-
fication problem is to find a mapping function f from
instance space to class space, for any instance A =
(p1sp2s*spw) €I and P(A) >0, there is only one
corresponding ¢, € C (i=1,2,--
fication regards the class with posterior probability
maximum, B; ={c=c¢;}(i=1,2,-
of A,that is

P(B, | A) =P(B; | A), j=1,2,,1 (2)

And from Bayesian theory ' .

P(A | BHP(B)

,[).Bayesian classi-

» 1) ,as the image

P(B, | A) = — o 1= 12,n
DIPCA | BHP(B)
j=1
(3)
Because
P(A) = D> P(A | BHP(B)) (4)
j=1

is fixed, so we only need to maximize P(A | B;) X
P(B;).In Eq. (3),P(A | B;) is priori probability,
P(B,;| A) is posterior probability. Because instance A
has m kinds of characteristics and it is supposed that
each class is independent,so

P(A|B) = [[P(pi | By i=1,2,.n (5
k=1

Considering the historical information of random
events in whole space, Bayesian classification has
good results for non-linear distributed data classifica-
tion.

2.2 Bayesian inference power model

We build a dynamic power model based on
Bayesian classification, regard the power value as a
class space C,and select special circuit coefficients to

compose the eigenspace I = <(P,, P,, -, P, >. These

coefficients represent circuit state changing informa-
tion and participate in posterior probability compu-
ting. This method calculates the probability of B; = {¢
=c,;} »which is the image of A =(p,.p2s-"spn) €
I ,and finds the classification result c;.

Based on the signal temporal and spatial correla-
tion analysis, we define input signal density P;,,input
transition density D;,, and output transition density
D, (zero-delay model) as coefficients used in Bayes-

ian classification:

Py« = lzxi,k (6)
ni4
Dy = %in.k—l D xix (D
i=1
1 m
Dok = 7Zyi.k71 @ Vik (8)
m =

Equations (6) ~ (8) define input signal density
P,.., sinput transition density D, ,and output transi-
tion density D, in the k-th cycle, respectively.
Xk (y;x) is the i-th input(output) signal value in the
k-th cycle, n and m are the total number of input and
output signals, respectively.

3 Deficiency of original coefficients

With the port signal coefficients,we can compute
power per cycle easily. But after further analysis, we
find that the circuit internal states could vary greatly
under the same port coefficients values. Because state
switching is the reason for dynamic power dissipa-
tion,we show the internal node transition under two
sets of input signal switching in C17.

In Fig. 1,the Dy, D, and P;, of the input transi-
tion Ay A, and B, B, are all the same,but B, B; makes
3 nodes change state, while A; A, changes none (the
numbers behind each gate are output under A, A, and
B, B, srespectively) .

Through analyzing the internal node state, we
find that three pairs of input switching (N1,N3,N6)
vanished in gate G1 and G2, which prevents latter
gates from switching. In other words, because of dif-
ferent logics and connections among the gates, input
signal switching could be absorbed at different inter-
nal nodes and could not pass the state changing to lat-
ter gates. Using only the port signal switching as coef-
ficients, internal transition information will be lost,
and we cannot know the spread status of state transi-
tion and whether most internal nodes make state
switching.

Another example is modules with enable signals.
Fig. 2 is a 2bit adder with an enable signal. When the
enable signal is 0, internal nodes will not switch, but
input A, A; By B; change. From this example, we see
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that some signals have a more important effect be-
cause they or their successive gates have a big fan-
out. At that time, we could not get the real working
characteristics if our estimation only depends on port
information.

By further quantitative analysis,we find that this
phenomenon commonly exists in working circuits.
Figure 3 shows the first and second level gate switching
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Fig.4 Switching density of the first level gate and total power
of C880

density and total power distribution under special
D, D, »and P;, for 10000 random sample cycles of
C880. The switching ratio of successive levels varies
widely under the same port signal coefficients values,
which results in the circuit total power having a big
difference. Table 1 shows the extremes from statis-
tics, from which we find that there are unignorable
differences in switching activity and power.

Figures 4 and 5 show the relation analysis result
between the power and internal gates’ switching
ratio. When the internal gates’ switching density in-
creases, total power exhibits an increasing trend. The
sample number at some density points is small, but
that does not affect the trend judgment.

Therefore, under the same port coefficient val-
ues, circuit internal states vary widely, while power
dissipation and internal gates switching density has a

1.4

D, =04
=U.. <
s P=0.5 6 © o
L <
2 Avg(P/P_avog) googs
: o080 :
[ o 8 (3
Z1.0F 1333 LERIAN
q‘SI 88°§§§/§ x
3 08 ~$7% g 5~ o
S8 S
o o B Qg
S 08F ¢/ 8og® §g ¢ °
LWV ]t
4 0% 88220200
0.6 o o 8 g ©
(o]
0.4 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08

Level 2 gate switching density

Fig.5 Switching density of the second level gate and total
power of C880
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positive trend. We introduce this relationship into the
power macro model,and propose using circuit slice a-
nalysis to obtain internal information, which increases
the model’s accuracy as a result.

4 Circuit slice analysis

4.1 Slice analysis

Based on the above analysis, we hope to extract
run-time internal information to build a power model
and reduce estimation error. Based on logic connec-
tions,we assign a depth value to each gate and define
it as level.which is computed as follows:

(1) All primary input levels are 0;

(2) The level of a non-NOT gate is the maximum
of all input signal levels plus 1;

(3) The gate output signal level equals the gate
level;

(4) The NOT gate output signal level equals the
input signal level;

The reason for treating the NOT gate specially is
that the input switching of the NOT gate results in
output switching. If we increase the NOT gate output
signal level value, the anterior level state transition
would be counted into the current level repeatedly.
So,we treat the NOT gate in a different way,not in-
creasing the output signal level value and not counting
it in the current level coefficient calculation.

Based on the above calculations,a circuit module
could be divided into d level gate sets according to
each gate level value, which is from 1 to d. The signal
level value is form 0 to d.in which the 0 level is the
primary input, the level 1 signal is the level 1 gate’s
output signal.and the level d signal is the output port
signal. In Fig. 1, for example, G3 is the second level
gate (the 2nd level slice) and G5 is the third level
gate (the 3rd level slice) .

Based on these calculations, we define that gates
with same level value compose a slice and define
D,  .the switching density of the L-th level slice in
k-th cycle.as follows:

1 n
D, = ;qu.k @XLi.k—l (9
i=1

where x,; is the i-th output signal value in the L-th
slice,and n is gate number of this level. We call this
method slice analysis and it extracts the circuit’s in-
ternal information effectively. Through this method,
different D, , are extracted and take part in the com-
puter model with port signal coefficients, resulting in
more accurate mapping from model coefficients to
power.

4.2 Slice method

The coefficient extracting method in the slice
method has great impact on modeling efficiency and
accuracy. We propose the following extracting meth-
od:

(1) Extract the first n-level signal switching den-
sity. This method’s advantage is when value n is not
large . we can use script representing first n-level logi-
cal connection,and extract coefficient values without
simulation.

(2) Extract the first n-level signal switching den-
sity with most gates. Slices with the most gates usually
have typical power dissipation characteristics and
adapt to be representative of internal switching.

(3) Divide a module into n blocks according to
the logical depth, and extract the signal switching
density of the level with the most gates in each block.
Methods 1 and 2 may extract successive slices in logi-
cal connection, which results in high correlation in co-
efficients and reduces information contained in slices
or get a slice with too few gates, making it hard to ex-
hibit a difference of varied input vectors. Selecting
the slice with the most gates in different sub blocks
can compromise those two aspects,and provide repre-
sentative switching in varied logical
depth for Bayesian inference.

information

Using slice analysis to extract runtime internal
information, new gate level netlists and simulation
circumstances need to be generated. We use a script to
automatically finish gate depth analysis,and create a
new netlist and simulation circumstance generation.
Figure 6 shows the modeling process, and Figure 7
shows the slice analysis algorithm (selecting method 2
as an example).

5 Experiment and result analysis

Figure 8 shows the slice analysis-based Bayesian
inference power modeling and verification process.
According to the circuit scale, we select ISCAS85
benchmark circuits as experimental objects. We use
gates with two input ports and a NOT gate as a target
library and synthesize the circuit into gate level
netlist. Slice analysis is realized in Perl, the gate level
simulation used Synopsys VCS7. 0, the power estima-
tion used PrimePower4. 2,and the sample analysis and
Bayesian inference were coded in C. All experiments
are accomplished on a Sun blade2000 workstation,
which has two 900MHz UltraSPARC III processors
and 4G memory. We use 1000 cycles of random sam-
ple data to build the Bayesian classification, and use
500 cycles of random sample date to verified the pow-
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Fig.6 Bayesian model building process based on slice analysis

Input: netlist.

Output: netlist_slice , simbench .
Method:

1) Read input, output, wire from netlist
2)  Assignall inputs level 0,

3)  While NET is not empty {
4) Read netlist ;
5) For each gate {

ORDERED NET ;
16)

Algorithm: Computer first n-level slice with most gates.

define all outputs and wires which aren't inputs as
set NET , and assign -1 to all elements in NET;

6) If all input level of the gate =0 {

7) If ( the gate is not NOT gate ) {

8) Output signal level of the gate =max ( input signals level )+ 1;
9) Add the gate into set ORDERED_NET [gate_output_signal_level];

10) }

11) Delete the gate output signal from NET;

12) )

13) )

14) }

15) Generate first n - level slice maxn_level with most gates according

Add maxn_level signals into output, generate simbench and netlist _slice.

Fig.7 Algorithm of extract top-n level circuits with most gates

er calculation. The power model error is computed
through a comparison between the Bayesian inference
result and the gate level estimation result, which is ex-
pressed in average error and RMS error of power-per-
cycle.

Using the module with 3-level slice coefficients as
example, we evaluated the effect of this slice based
dynamic power model for three kinds of proposed
slice extraction methods. The comparison between the
model adding slice coefficients and the original model
that only uses port information is shown in Table 2,in
which E is average power-per-cycle error, V is RMS
error, A is the relative error reduction of the slice

analysis-based model compared with the original mod-
el, subscript O means original Bayesian model, and
subscript SM,SS and SF stand for three proposed ex-
traction methods: slices with the most gates, slices
with the most gates in blocks,first n level slices.
Table 2 shows that adding slice coecfficients
brings a notable reduction to the original Bayesian
model error. On average,it has better results than ex-
tracting slices with the most gates and slices with the
most gates in blocks, whose average error and RMS
error are all reduced by above 20% ; and extracting
the first three level slices results in a relatively weak
optimization,whose average error and RMS error are
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Fig.8 Bayesian inference power model building and validation
Table 2 Power estimation result comparison between 3-level slice analysis and original model
Average error of power-per-cycle RMS error of power-per-cycle
Circuit Original SM SS SF Original SM N SF
E() ESM AESM //’ 0/0 ESS AESS,//O/O ESF AESF // o/() V() VSM AVSM,’/O/O VSS AVSS // o/() VSF AVSF,/O/O
C432 0.150 0.117 22.0 0.116 22.7 0.146 2.7 0.212 0.153 27.8 0.154 27.4 0.200 5.7
C880 0.149 0.093 37.6 0.096 35.6 0.132 11.4 0.198 0.119 39.9 0.123 37.9 0.171 13.6
C1355 0.078 0.074 5.1 0.071 9.0 0.068 12.8 0.101 0.095 5.9 0.089 11.9 0.086 14.9
C1908 0.102 0.084 17.6 0.087 14.7 0.079 22.5 0.134 0.111 17.2 0.115 14.2 0.105 21.6
C3540 0.111 0.103 7.2 0.097 12.6 0.103 7.2 0.166 0.139 16.3 0.131 21.1 0.139 16.3
C6288 0.087 0.064 26.4 0.065 25.3 0.064 26.4 0.113 0.082 27.4 0.083 26.5 0.081 28.3
C7552 0.096 0.069 28.1 0.077 19.8 0.053 44.8 0.122 0.085 30.3 0.096 21.3 0.069 43.4
Average 0.110 0.086 21.9 0.087 21.2 0.092 16.6 0.149 0.112 25.0 0.113 24. 4 0.122 18. 6

reduced by 16. 6% and 18. 6% , respectively.

On the other hand, extracting the first n level
slices has a relatively better optimization in big scale
circuit modeling, e. g., estimations on C6288 and
C7552 are more accurate. The reason is that the first
n level slices in large scale circuits usually have big
number gates and result in a large switching density
change range, while deeper level slices have a rela-
tively small switching density change range because
anterior switching is absorbed by middle cells. Thus,
the first n level slices could provide a broader coeffi-
cient change and reduce model error.

Table 3 uses the SM method as an example to
compare the results of our model and Refs. [2,4].
References [ 5,8,9] did not evaluate ISCAS85, and
References [ 6, 7] aimed at node average switching
probability but not power-per-cycle, so they are not
proper to compare directly. Compared with the cycle-
accurate power estimation in Refs.[3,4],the average
error of our model is reduced by 24.6% and 7.5%.
Compared with the total power estimation in Refs.

[2,3],the error of our model is reduced an order on
average. Slice analysis can distinguish different inter-
nal power dissipations under the same port switching
density,thus increases model accuracy.

Table 4 uses the 500-cycle power estimation as an
example to list the time consumption of the slice anal-
ysis-based power model. After adding slice analysis,
the simulation and model computation time increase
over the gate level power estimation time can be al-
most ignored and it has a 700 + speedup under in-

Table 3 Comparison of different estimation techniques

Average error of power-per-cycle Error of total power

Circuit - —
Wul3)  Guptal*)  Our model Wul?l  Gupta?! Our model

C432 0.193 0.134 0.117 0.0310 0.0441  0.0008
C880  0.143 0.119 0.093 0.0320 0.0362 0.0013
C1355 0.093  0.058 0.074 0.0270 0.0403 0.0021
C1908 0.116  0.089 0.084 0.0200 0.0373 0.0047
C3540 0.125 0.110 0.103 0.0200 0.0322 0.0064
C6288 0.062 0.076 0.064 0.0190 0.0222  0.0036
C7552  0.069  0.065 0.069 0.0110 0.0265 0.0046

Average 0.114  0.093 0.086 0.0229 0.0341 0.0034
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Table 4 Time cost and speedup of slice analysis power model 0.20
Gate-level  gjulation time Computation time Speedup
Circuit power ana- 5 0.16 -
lysis time Original Slice Original Slice  Original Slice E
C432 158.3 0.108 0.117 0.16 0.17 590.7 551.6 2 0.12-/\/\/‘\’/\/\,/\_/\/-~/\
C880 210.0 0.150 0.183 0.16 0.17 677.4 594.9 g 0,08k
C1355 234.2 0.158 0.217 0.16  0.17 736.5 605.2 ’
C1908 210.8 0.142 0.167 0.16 0.17 698.0 625.5 0.04 1 1 ] 1 1
C3540  340.8  0.217 0.292 0.16 0.17 904.0 737.7 0 3 0 15 20 25 30
Vector set
C6288 1894.2 0.808 1.650 0.16  0.17  1956.8 1040.8
C7552 630.0 0.375 0.608 0.16 0.17 1177.6 809.8 Fig.10 Impact of input sample on model accuracy in C432
Average 525.5 0.280 0.462 0.16 0.17 963.0 709.3

creased accuracy. At the same time, we note that pow-
er computation time in the Bayesian model will not
change as circuit scale increases. This scalability is ex-
tremely suitable for big scale circuit power estima-
tion.

We also analyze the slice number impact on er-
ror. Because all circuits have similar results, we only
describe those from C880. As Figure 9 shows, when
the slice number changes from 0 to 3, power-per-cycle
average error and RMS error has a notable reduction;
once the slice number is larger than 5,increasing the
slice number only brings a relatively small amount of
additional information and further reduces errors
mildly.

Using 30 groups of random input vectors to build
and verify the model,we test model sensitivity for in-
put data. Because the results have similar characteris-
tics, we describe the relation between model error and
input group with C432, which is shown in Fig. 10. We
see that the RMS error of estimation errors in all
groups is 0. 24% ; this indicates that our model is in-
sensitive to the input data for building models and es-
timation.

Slice analysis can effectively reduce the Bayesian
dynamic power model error using little computation
and memory dissipation. Extracting slices with the

0.20F
0181 « —e— RMS error
—m— Average error
0.16F of power—per—cycle
- [
E 014} T 0\
0.12F ‘\\
e
0.10F ~_
—a
— .
0.081
1 1 1 1 1 1 1
0 1 2 3 4 5 6
Slice number
Fig.9 Impact of slice number on power estimation error in
C880

most gates and the most gates in the blocks are rela-
tively more effective for middle or small scale cir-
cuits, while extracting the first n-level slice has better
results and time consumption for large scale circuits.
When building models, selecting three level slices can
usually obtain good accuracy.

6 Modeling and estimation cost

Next,we analyze modeling and estimation costs.
The time cost of building a slice analysis-based power
model is:

Textract,sliccs
10)
where simulation and gate level power estimation
time is inevitable in all kinds of analytical modeling
methods (e.g.Refs.[2~4,8,9]) ,because the original
data come from this process. Figure 5 shows the mod-

Tmodeling = Tsample,simulation + Tsamp]e,powcr,estimation

eling time using 1000 cycle samples. Most of the time
is consumed during the sample gate-level power esti-
mation,e. g. 98. 3% in SM, 99. 5 in SF. Extracting
slices in modeling is a process composed of node level-
ization and sorting, whose time complexity are n and
nlgn'* (for SF, the cost is much smaller because it
only levelizes partial circuits and does not need sor-
ting) . So, a circuit scale increase will not bring much
complexity to slice processing. Figure 5 shows that ex-
tracting slices only adds a 1% time cost based on gate
level simulation and power analysis.

The computation cost of our model is small. U-
sing Dy, s Dows Pinsand n level D, as coefficients to
participate in Bayesian inference, supposing the pow-
er class number is L, and using weighting addition
based on probability to calculate power,then L (n +
3) times multiplication and L — 1 times addition is
needed to calculate the power of each cycle. In high
level power estimation, L. usually is not large (<20),
thus the computation cost is very small. At the same
time, port number and slice scale usually increase line-
arly as circuit scale increases,so the sample and com-
putation consumption of the model are affected little
by the circuit, which results in good scalability.
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Table 5 Time of building model with 1000-cycle sample
L Ts SM modeling SF modeling
Circuit Térea — : /
Original Slice Te Trotal Taiea/ % Te T rotal Torea/ %

C432 466.7 0.167 0.183 1 468.1 99.7 <1 467. 6 99.8
C880 590.0 0.250 0.292 3 593.5 99.4 1 591.5 99.7
C1355 724.2 0.267 0.347 5 729.8 99.2 2 726. 8 99. 6
C1908 610.8 0.255 0.267 3 614.3 99.4 1 612. 3 99. 8
C3540 1087.5 0.342 0.558 11 1099.4 98.9 5 1093. 4 99.5
C6288 6965.0 1.530 3.2563 410 7379.8 94.4 48 7017. 8 99.2
C7552 2027.5 0.642 1.125 66 2095.3 96.8 26 2055. 3 98. 6

Average 1781.7 0.493 0.861 71 1854.3 98.3 14 1795.0 99.5

* : TgLpa 1S gate-level power analysis time dissipation, T's is simulation time dissipation, Tg is slice extraction time dissipation, T ro is the sum of

TcrpasTs and Tg.

Our model also has small memory consumption:
suppose the class number is L and the coefficients
class number is M ,then the priori probability memory
requirement is L ((3 + n) M + 1), which will not in-
crease with circuit scale either.

7 Conclusion

The slice analysis method extracts a key level co-
efficients from inside the circuit and uses those coeffi-
cients to build a Bayesian power model. This method
considers not only port information but also the inter-
nal node switching situation, and reduces the error
caused by estimating only using port information. Ex-
periments indicate that power estimation based on
this method has good accuracy and speedup. At the
same time,it is insensitive to input data.
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