Citation: |
Zhenyao Li, Chen Lyu, Xuliang Zhou, Mengqi Wang, Haotian Qiu, Yejin Zhang, Hongyan Yu, Jiaoqing Pan. High-speed electro-absorption modulated laser[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25030015
****
Z Y Li, C Lyu, X L Zhou, M Q Wang, H T Qiu, Y J Zhang, H Y Yu, and J Q Pan, High-speed electro-absorption modulated laser[J]. J. Semicond., 2025, accepted doi: 10.1088/1674-4926/25030015
|
High-speed electro-absorption modulated laser
DOI: 10.1088/1674-4926/25030015
CSTR: 32376.14.1674-4926.25030015
More Information-
Abstract
Currently, the global 5G network, cloud computing, and data center industries are experiencing rapid development. The continuous growth of data center traffic has driven the vigorous progress in high-speed optical transceivers for optical interconnection within data centers. The electro-absorption modulated laser (EML), which is widely used in optical fiber communications, data centers, and high-speed data transmission systems, represents a high-performance photoelectric conversion device. Compared to traditional directly modulated lasers (DMLs), EMLs demonstrate lower frequency chirp and higher modulation bandwidth, enabling support for higher data rates and longer transmission distances. This article introduces the composition, working principles, manufacturing processes, and applications of EMLs. It reviews the progress on advanced indium phosphide (InP)-based EML devices from research institutions worldwide, while summarizing and comparing data transmission rates and key technical approaches across various studies. -
References
[1] Zhao Y S, Xue X W, Ren X F, et al. Optical switching data center networks: understanding techniques and challenges. J Comput Netw Commun, 2023, 1(2), 272[2] Sun C Z, Yang S H, Xiong B, et al. Progress in high-speed electroabsorption modulated lasers. Chin J Laser, 2020, 47(7), 0701002 doi: 10.3788/CJL202047.0701002[3] Diamantopoulos N P, Yamazaki H, Yamaoka S, et al. >100-GHz bandwidth directly-modulated lasers and adaptive entropy loading for energy-efficient >300-Gbps/λ IM/DD systems. J Light Technol, 2021, 39(3), 771 doi: 10.1109/JLT.2020.3021727[4] Schrenk B. Electroabsorption-modulated laser as optical transmitter and receiver: Status and opportunities. IET Optoelectron, 2020, 14(6), 374 doi: 10.1049/iet-opt.2020.0010[5] Yasaka H, Yokota N, Shindo T, et al. Improvement in bandwidth of an electro-absorption modulator by optical pre-emphasis utilizing photon-photon resonance. IEICE Electron Express, 2024, 21(2), 20230594 doi: 10.1587/elex.20.20230594[6] Gu H T, Zhang Y, Yuan Z T, et al. Application and research progress of InP-based electroabsorption modulated lasers. Lamps and Lighting, 2022, 164(2), 71(in Chinese)[7] Yang F. Research on electroabsorption modulated lasers. ME Dissertation, Huazhong University of Science and Technology, 2021 (in Chinese)[8] Zhong M Y. Research on high-speed electro-absorption modulated wavelength-tunable lasers. ME Dissertation, Zhengzhou University of Light Industry, 2024 (in Chinese)[9] Shirao M, Sano H, Nakamura S, et al. A high performance EML TOSA employing FPC interface for 53 GBaud PAM4. 2018 IEEE International Semiconductor Laser Conference (ISLC). Santa Fe, NM, USA. IEEE, 2018, 1[10] Uchiyama A, Okuda S, Tsuji T, et al. Demonstration of 155 Gbaud PAM4 and PAM6 EML with narrow high-mesa EA modulator for 400 Gbps per Lane. TransmissionOptical Fiber Communication Conference (OFC) 2024. San Diego California. Optica Publishing Group, 2024, Tu2D. 1[11] Ohata N, Suzuki J, Uchiyama A, et al. A 224 Gb/s EML sub-assembly with electro optical bandwidth of 60 GHz for 800 GbE applications. IEEE Photonics Technol Lett, 2023, 35(4), 211 doi: 10.1109/LPT.2022.3233715[12] Shirao M, Okuda S, Uchiyama A, et al. 112 GBaud PAM-8 operation of 2-ch EML array on high-performance sub-mount. Next-Generation Optical Communication: Components, Sub-Systems, and Systems XIII, 2024[13] Uchiyama A, Okuda S, Hokama Y, et al. 225 Gb/s PAM4 2 km and 10 km transmission of electro-absorption modulator integrated laser with hybrid waveguide structure for 800 Gb/s and 1.6 Tb/s transceivers. J Light Technol, 2024, 42(4), 1225 doi: 10.1109/JLT.2023.3303884[14] Shinya O, Asami U, Toshiya T, et al. High-speed 340 Gbps PAM4 and 450 Gbps PAM6 operations of narrow high-mesa EML. 2025 Optical Fiber Communications Conference and Exhibition (OFC), 2025, Tu2J. 7[15] Shirao M, Fujita T, Uchiyama A, et al. A high-speed EML on sub-mount for 200 G PAM4. 2022 IEEE Photonics Conference (IPC), 2022, 1[16] Masahiro H, Akira T, Kan T, et al. 53Gbaud electro-absorption modulator integrated lasers for intra-data center networks. Sumitomo Electric Technical, 2023, 96, 20[17] Bhasker P, Arora S, Robertson A, et al. 200 G per lane uncooled CWDM hybrid CMBH-ridge electroabsorption modulated lasers for 2-km transmission. 2023 Optical Fiber Communications Conference and Exhibition (OFC), 2023, 1[18] Asakura H, Nishimura K, Yamauchi S, et al. 420 Gbps PAM8 operation using 93 GHz bandwidth lumped- electrode type EA-DFB laser at 50°c beyond 400 Gbps/lane. 2022 European Conference on Optical Communication (ECOC), 2022, 1[19] Yamauchi S, Adachi K, Asakura H, et al. 224-Gb/s PAM4 uncooled operation of lumped-electrode EA-DFB lasers with 2-km transmission for 800 GbE application. 2021 Optical Fiber Communications Conference and Exhibition (OFC), 2021, 1[20] Nishimura K, Asakura H, Yamauchi S, et al. 225-Gb/s PAM4 operation using lumped-electrode-type EA-DFB laser for 5- and 10-km transmission with low TDECQ. 2023 Optical Fiber Communications Conference and Exhibition (OFC), 2023, 1[21] Asakura H, Nishimura K, Yamauchi S, et al. 384-Gb/s/lane PAM8 operation using 76-GHz bandwidth EA-DFB laser at 50ºC with 1.0-Vpp swing over 2-km transmission. Optical Fiber Communication Conference (OFC) 2022, 2022, Th4C. 4[22] Shindo T, Fujiwara N, Kanazawa S, et al. High power and high speed SOA assisted extended reach EADFB laser (AXEL) for 53-Gbaud PAM4 fiber-amplifier-less 60-km optical link. J Light Technol, 2020, 38(11), 2984 doi: 10.1109/JLT.2020.2974511[23] Shindo T, Kanazawa S, Nakanishi Y, et al. High-output-power 1358-nm-wavelength SOA- integrated EADFB laser (AXEL) for 25-Gbit/s 100-km transmissions. J Light Technol, 2023, 41(9), 2815[24] Kobayashi W, Kanazawa S, Shindo T, et al. 128 Gbit/s operation of AXEL with energy efficiency of 1.5 pJ/bit for optical interconnection. IEICE Trans Electron, 2023, E106.C(11), 732 doi: 10.1587/transele.2022OCI0002[25] Kanazawa S, Shindo T, Chen M C, et al. 224-Gbit/s 4-PAM operation of compact DC block circuit integrated hi-FIT AXEL transmitter with low power consumption. J Light Technol, 2023, 41(10), 3131 doi: 10.1109/JLT.2023.3242371[26] Taniguchi H, Nakamura M, Hamaoka F, et al. 1.6-Tb/s 10-km transmission in O-band using 400-Gb/s/lane SDM channels enhanced by trellis path-limitation MLSE. J Light Technol, 2024, 42(12), 4338 doi: 10.1109/JLT.2024.3407973[27] Yamazaki H, Ogiso Y, Nakamura M, et al. Transmission of 160.7-GBaud 1.64-Tbps signal using phase-interleaving optical modulator and digital spectral weaver. J Light Technol, 2023, 41(11), 3382 doi: 10.1109/JLT.2023.3236350[28] Yasaka H, Yokota N, Shindo T, et al. Numerical analysis for high-speed hybrid- modulation semiconductor laser integrated with passive waveguide. IEEE J Quantum Electron, 2024, 60(4), 2000408[29] Yasaka H, Kobayashi W, Yokota N. Numerical analysis of 100-Gbit/s dynamic single-mode operation of hybrid-modulation semiconductor lasers. IEEE J Quantum Electron, 2023, 59(2), 1200107[30] Caruso G, Cano I N, Nesset D, et al. Real-time 100 Gb/s PAM-4 for access links with up to 34 dB power budget. J Light Technol, 2023, 41(11), 3491 doi: 10.1109/JLT.2023.3244028[31] Chen X, Wang H B, Cronin R, et al. Efficient, high power, low chirp electro-absorption modulated laser integrated with SOA for 50G PON application. 2024 IEEE 29th International Semiconductor Laser Conference (ISLC),[32] Chen X, Wang H B, Cronin R, et al. A high power electro-absorption modulated laser integrated with SOA suitable for 50 G PON application. IEEE Photonics Technol Lett, 2024, 36(1), 5 doi: 10.1109/LPT.2023.3330261[33] Theurer M, Kottke C, Freund R, et al. 4 × 200 Gb/s EML-Array with a Single MQW Layer Stack. Optical Fiber Communication Conference (OFC) 2023, 2023, M2D. 5[34] Theurer M, Kottke C, Freund R, et al. 200 Gb/s uncooled EML with single MQW layer stack design. 2022 European Conference on Optical Communication (ECOC), 2022, 1[35] Andrianopoulos E, Tokas K, de Felipe D, et al. Integrated 800 Gb/s O-band WDM optical transceiver enabled by hybrid InP-polymer photonic integration. J Opt Commun Netw, 2024, 16(8), D44 doi: 10.1364/JOCN.522903[36] Yun S J, Han Y T, Lee D H, et al. A 66-GHz lumped-EML submodule using resistance-optimized LC resonance with low temperature dependence of 3-dB bandwidth. 2023 Optical Fiber Communications Conference and Exhibition (OFC), 2023, 1[37] Lee S, Kim N, Park M, et al. 1.3-µm identical active electro-absorption modulated laser with quantum well intermixed passive waveguide. Opt Express, 2024, 32(3), 3278 doi: 10.1364/OE.501764[38] Yun S J, Han Y T, Lee D H, et al. 112-Gbaud PAM4 operation of lumped-EML with 150-um EAM length using LC resonance based on matching resistance optimization. J Light Technol, 2024, 42(1), 229 doi: 10.1109/JLT.2023.3301044[39] Zhang C, Zhu H L, Liang S, et al. Electroabsorption modulated DFB lasers fabricated by IFVD-QWI technology. Journal of Optoelectronics·Laser, 2013, 24(8), 1451[40] Liang S, Lu D, Zhao L J, et al. Fabrication of InP-based monolithically integrated laser transmitters. Sci China Inf Sci, 2018, 61(8), 080405 doi: 10.1007/s11432-018-9478-1[41] Han L S, Liang S, Zhu H L, et al. Fabrication of an electro-absorption modulated distributed feedback laser by quantum well intermixing with etching ion-implantation buffer layer. Chin Opt Lett, 2015, 13(8), 81301 doi: 10.3788/COL201513.081301[42] Zhang Z H, Lu D, Zhou D B, et al. Wideband-tunable (2–22 GHz) low-phase-noise (- 120 dBc/Hz) optoelectronic oscillator based on EML with RF-injection. 2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM), 2023, 1[43] Zhou D B, Liang S, Zhang R K, et al. 50 Gb/s wavelength tunable DBR laser integrated with an electro-absorption modulator. Photonics, 2022, 9, 780 doi: 10.3390/photonics9100780[44] Zhong M Y, Li H, Zhou D B, et al. EAM integrated widely tunable DBR lasers based on InGaAlAs/InP MQWs. IEEE Photonics J, 2024, 16(5), 1502605[45] Yeh C Y, Chen B H, Hsiao C W, et al. High-speed electro-absorption modulator integrated DFB laser using traveling-wave electrodes. 2023 IEEE Photonics Conference (IPC), 2023, 1[46] Chiu Y J, Chang Y H, Wang Z H, et al. High-speed optical modulation through the quantum well intermixing (QWI) semiconductor optical amplifier (SOA)-integration electroabsorption modulator (EAM). 2023 28th Microoptics Conference (MOC), 2023, 1[47] Han Y, Tian Q, Hu Q M, et al. Bandwidth extension of EML chip-on-carrier submodule using precise parameters extraction. IEEE Photonics Technol Lett, 2023, 35(23), 1251 doi: 10.1109/LPT.2023.3314637[48] Wang Z W, Meng J J, Chen Q, et al. Electro-absorption modulated 53 Gbps widely tunable laser based on half-wave V-coupled cavities. Opt Lett, 2024, 49(13), 3798 doi: 10.1364/OL.524830[49] Andrianopoulos E, Pagano A, Groumas P, et al. Hybrid integration of polymer PICs and InP optoelectronics for WDM and SDM terabit intra-DC optical interconnects. 2023 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 2023, 259[50] Sun Z X, Sun W T, Xiao R L, et al. 16-channel 25 Gb/s electroabsorption modulated tunable multi-wavelength DFB laser array based on REC technique. J Light Technol, 2025, 43(9), 4389 doi: 10.1109/JLT.2025.3538643[51] Shima T, Yokota N, Yoshida M, et al. Measurement of 124-GHz E/O modulation bandwidth in hybrid modulation laser. IEEE Photonics Technol Lett, 2023, 35(10), 565 doi: 10.1109/LPT.2023.3263970 -
Proportional views