2019年JOS入选“中国科技期刊卓越行动计划”
2020年11月JOS被EI数据库收录
×

喜讯!半导体学报成功被EI收录!

In Press
In Press articles are edited and published online ahead of issue. When the final article is assigned to volumes/issues, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues.
+ show detail
  • Fe3+-substitution effect on the thermal variation of JE characteristics and DC resistivity of quadruple perovskite CaCu3Ti4O12

    Kunal B. Modi, Pooja Y. Raval, Dolly J. Parekh, Shrey K. Modi, Niketa P. Joshi, Akshay R. Makadiya, Nimish H. Vasoya, Utpal S. Joshi

    , Available online

    Abstract Full Text PDF

    The electrical properties of cubic perovskite series, CaCu3–xTi4–xFe2xO12 with x = 0.0, 0.1, 0.3, 0.5, and 0.7, have been studied by employing current density as a function of electric field characteristics registered at different temperatures and thermal variations of direct current electrical resistivity measurements. All of the compositions exhibit strong non-ohmic behavior. The concentration dependence of breakdown field, the temperature at which switching action takes place, and maximum value of current density (Jmax) has been explained on account of structural, microstructural, and positron lifetime parameters. The highest ever reported value of Jmax = 327 mA/cm2 has been observed for pristine composition. The values of the nonlinear coefficient advise the suitability of ceramics for low-voltage varistor applications. The Arrhenius plots show typical semiconducting nature. The activation energy values indicate that electric conduction proceeds through electrons with deformation in the system.

  • A review on SRAM-based computing in-memory: Circuits, functions, and applications

    Zhiting Lin, Zhongzhen Tong, Jin Zhang, Fangming Wang, Tian Xu, Yue Zhao, Xiulong Wu, Chunyu Peng, Wenjuan Lu, Qiang Zhao, Junning Chen

    , Available online

    Abstract Full Text PDF

    Artificial intelligence (AI) processes data-centric applications with minimal effort. However, it poses new challenges to system design in terms of computational speed and energy efficiency. The traditional von Neumann architecture cannot meet the requirements of heavily data-centric applications due to the separation of computation and storage. The emergence of computing in-memory (CIM) is significant in circumventing the von Neumann bottleneck. A commercialized memory architecture, static random-access memory (SRAM), is fast and robust, consumes less power, and is compatible with state-of-the-art technology. This study investigates the research progress of SRAM-based CIM technology in three levels: circuit, function, and application. It also outlines the problems, challenges, and prospects of SRAM-based CIM macros.

  • Observation of resistive switching in a graphite/hexagonal boron nitride/graphite heterostructure memristor

    Yafeng Deng, Yixiang Li, Pengfei Wang, Shuang Wang, Xuan Pan, Dong Wang

    , Available online

    Abstract Full Text PDF

    With the atomically sharp interface and stable switching channel, van der Waals (vdW) heterostructure memristors have attracted extensive interests for the application of high-density memory and neuromorphic computing. Here, we demonstrate a new type of vdW heterostructure memristor device by sandwiching a single-crystalline h-BN layer between two thin graphites. In such a device, a stable bipolar resistive switching (RS) behavior has been observed for the first time. We also characterize their switching performance, and observe an on/off ratio of >103 and a minimum RESET voltage variation coefficient of 3.81%. Our work underscores the potential of 2D materials and vdW heterostructures for emerging memory and neuromorphic applications.

  • Recent development in electronic structure tuning of graphitic carbon nitride for highly efficient photocatalysis

    Chao Li, Jie Li, Yanbin Huang, Jun Liu, Mengmeng Ma, Kong Liu, Chao Zhao, Zhijie Wang, Shengchun Qu, Lei Zhang, Haiyan Han, Wenshuang Deng, Zhanguo Wang

    , Available online

    doi: 10.1088/1674-4926/43/2/021701

    Abstract Full Text PDF Get Citation

    The utilization of solar energy to drive energy conversion and simultaneously realize pollutant degradation via photocatalysis is one of most promising strategies to resolve the global energy and environment issues. During the past decade, graphite carbon nitride (g-C3N4) has attracted dramatically growing attention for solar energy conversion due to its excellent physicochemical properties as a photocatalyst. However, its practical application is still impeded by several limitations and shortcomings, such as high recombination rate of charge carriers, low visible-light absorption, etc. As an effective solution, the electronic structure tuning of g-C3N4 has been widely adopted. In this context, firstly, the paper critically focuses on the different strategies of electronic structure tuning of g-C3N4 like vacancy modification, doping, crystallinity modulation and synthesis of a new molecular structure. And the recent progress is reviewed. Finally, the challenges and future trends are summarized.

  • Performance enhancement of solution-processed InZnO thin-film transistors by Al doping and surface passivation

    Wensi Cai, Haiyun Li, Mengchao Li, Zhigang Zang

    , Available online

    Abstract Full Text PDF

    Solution-processed oxide semiconductors have been considered as a potential alternative to vacuum-based ones in printable electronics. However, despite spin-coated InZnO (IZO) thin-film transistors (TFTs) have shown a relatively high mobility, the lack of carrier suppressor and the high sensitivity to oxygen and water molecules in ambient air make them potentially suffer issues of poor stability. In this work, Al is used as the third cation doping element to study the effects on the electrical, optoelectronic, and physical properties of IZO TFTs. A hydrophobic self-assembled monolayer called octadecyltrimethoxysilane is introduced as the surface passivation layer, aiming to reduce the effects from air and understand the importance of top surface conditions in solution-processed, ultra-thin oxide TFTs. Owing to the reduced trap states within the film and at the top surface enabled by the doping and passivation, the optimized TFTs show an increased current on/off ratio, a reduced drain current hysteresis, and a significantly enhanced bias stress stability, compared with the untreated ones. By combining with high-capacitance AlOx, TFTs with a low operating voltage of 1.5 V, a current on/off ratio of > 104 and a mobility of 4.6 cm2/(V·s) are demonstrated, suggesting the promising features for future low-cost, low-power electronics.

  • Transparent conductive stannic oxide coatings employing an ultrasonic spray pyrolysis technique: The relevance of the molarity content in the aerosol solution for improvement the electrical properties

    L. Castañeda

    , Available online

    doi: 10.1088/1674-4926/43/2/022802

    Abstract Full Text PDF Get Citation

    Highly transparent conductive stoichiometric nanocrystalline stannic oxide coatings were deposited onto Corning® EAGLE XG® slim glass substrates. Including each coating, it was deposited for various concentrations in the aerosol solution with the substrate temperature maintained at 623.15 K by an ultrasonic spray pyrolysis (USP) technique. Nitrogen was employed both as the solution carrier in addition to aerosol directing gas, maintaining its flow rates at 3500.0 and 500.0 mL/min, respectively. The coatings were polycrystalline, with preferential growth along the stannic oxide (112) plane, irrespective of the molarity content in the spray solution. The coating prepared at 0.2 M, a concentration in the aerosol solution, showed an average transmission of 60% in the visible light region spectrum with a maximum conductivity of 24.86 S/cm. The coatings deposited exhibited in the general photoluminescence spectrum emission colors of green, greenish white, and bluish white calculated on the intensities of the excitonic and oxygen vacancy defect level emissions.

  • Avalanche photodiodes on silicon photonics

    Yuan Yuan, Bassem Tossoun, Zhihong Huang, Xiaoge Zeng, Geza Kurczveil, Marco Fiorentino, Di Liang, Raymond G. Beausoleil

    , Available online

    Abstract Full Text PDF

    Silicon photonics technology has drawn significant interest due to its potential for compact and high-performance photonic integrated circuits. The Ge- or III–V material-based avalanche photodiodes integrated on silicon photonics provide ideal high sensitivity optical receivers for telecommunication wavelengths. Herein, the last advances of monolithic and heterogeneous avalanche photodiodes on silicon are reviewed, including different device structures and semiconductor systems.

  • Silicon-integrated high-speed mode and polarization switch-and-selector

    Yihang Dong, Yong Zhang, Jian Shen, Zihan Xu, Xihua Zou, Yikai Su

    , Available online

    Abstract Full Text PDF

    On-chip optical communications are growingly aiming at multimode operation together with mode-division multiplexing to further increase the transmission capacity. Optical switches, which are capable of optical signals switching at the nodes, play a key role in optical networks. We demonstrate a 2 × 2 electro-optic Mach–Zehnder interferometer-based mode- and polarization-selective switch fabricated by standard complementary metal–oxide–semiconductor process. An electro optic tuner based on a PN-doped junction in one of the Mach–Zehnder interferometer arms enables dynamic switching in 11 ns. For all the channels, the overall insertion losses and inter-modal crosstalk values are below 9.03 and –15.86 dB at 1550 nm, respectively.

  • Structural and optical properties of AlN sputtering deposited on sapphire substrates with various orientations

    Xianchun Peng, Jie Sun, Huan Liu, Liang Li, Qikun Wang, Liang Wu, Wei Guo, Fanping Meng, Li Chen, Feng Huang, Jichun Ye

    , Available online

    doi: 10.1088/1674-4926/43/2/022801

    Abstract Full Text PDF Get Citation

    AlN thin films were deposited on c-, a- and r-plane sapphire substrates by the magnetron sputtering technique. The influence of high-temperature thermal annealing (HTTA) on the structural, optical properties as well as surface stoichiometry were comprehensively investigated. The significant narrowing of the (0002) diffraction peak to as low as 68 arcsec of AlN after HTTA implies a reduction of tilt component inside the AlN thin films, and consequently much-reduced dislocation densities. This is also supported by the appearance of E2(high) Raman peak and better Al–N stoichiometry after HTTA. Furthermore, the increased absorption edge after HTTA suggests a reduction of point defects acting as the absorption centers. It is concluded that HTTA is a universal post-treatment technique in improving the crystalline quality of sputtered AlN regardless of sapphire orientation.

  • Defects properties and vacancy diffusion in Cu2MgSnS4

    Kin Fai Tse, Shengyuan Wang, Man Hoi Wong, Junyi Zhu

    , Available online

    Abstract Full Text PDF

    Cu2ZnSnS4 (CZTS) is a promising photovoltaic absorber material, however, efficiency is largely hindered by potential fluctuation and a band tailing problem due to the abundance of defect complexes and low formation energy of an intrinsic CuZn defect. Alternatives to CZTS by group I, II, or IV element replacement to circumvent this challenge has grown research interest. In this work, using a hybrid (HSE06) functional, we demonstrated the qualitative similarity of defect thermodynamics and electronic properties in Cu2MgSnS4 (CMTS) to CZTS. We show SnMg to be abundant when in Sn- and Cu-rich condition, which can be detrimental, while defect properties are largely similar to CZTS in Sn- and Cu-poor. Under Sn- and Cu-poor chemical potential, there is a general increase in formation energy in most defects except SnMg, CuMg remains as the main contribution to p-type carriers, and SnMg may be detrimental because of a deep defect level in the mid gap and the possibility of forming defect complex SnMg+MgSn. Vacancy diffusion is studied using generalized gradient approximation, and we find similar vacancy diffusion properties for Cu vacancy and lower diffusion barrier for Mg vacancy, which may reduce possible Cu-Mg disorder in CMTS. These findings further confirm the feasibility of CMTS as an alternative absorber material to CZTS and suggest the possibility for tuning defect properties of CZTS, which is crucial for high photovoltaic performance.

  • Diamond semiconductor and elastic strain engineering

    Chaoqun Dang, Anliang Lu, Heyi Wang, Hongti Zhang, Yang Lu

    , Available online

    Abstract Full Text PDF

    Diamond, as an ultra-wide bandgap semiconductor, has become a promising candidate for next-generation microelectronics and optoelectronics due to its numerous advantages over conventional semiconductors, including ultrahigh carrier mobility and thermal conductivity, low thermal expansion coefficient, and ultra-high breakdown voltage, etc. Despite these extraordinary properties, diamond also faces various challenges before being practically used in the semiconductor industry. This review begins with a brief summary of previous efforts to model and construct diamond-based high-voltage switching diodes, high-power/high-frequency field-effect transistors, MEMS/NEMS, and devices operating at high temperatures. Following that, we will discuss recent developments to address scalable diamond device applications, emphasizing the synthesis of large-area, high-quality CVD diamond films and difficulties in diamond doping. Lastly, we show potential solutions to modulate diamond’s electronic properties by the “elastic strain engineering” strategy, which sheds light on the future development of diamond-based electronics, photonics and quantum systems.

  • The origin and evolution of Y6 structure

    Jiamin Cao, Lifei Yi, Liming Ding

    , Available online

    doi: 10.1088/1674-4926/43/3/030202

    Abstract Full Text PDF Get Citation

  • Application of metal halide perovskite photodetectors

    Xiyan Pan, Liming Ding

    , Available online

    doi: 10.1088/1674-4926/43/2/020203

    Abstract Full Text PDF Get Citation

  • To enhance the performance of n-type organic thermoelectric materials

    Xin Wang, Yongqiang Shi, Liming Ding

    , Available online

    doi: 10.1088/1674-4926/43/2/020202

    Abstract Full Text PDF Get Citation

  • Suppressing photoinduced phase segregation in mixed halide perovskites

    Lili Ke, Lixiu Zhang, Liming Ding

    , Available online

    doi: 10.1088/1674-4926/43/2/020201

    Abstract Full Text PDF Get Citation

Search

Advanced Search >>

Upcoming Issues