J. Semicond. > Volume 30 > Issue 11 > Article Number: 114004

Structural and electrical characteristics of lanthanum oxide gate dielectric film on GaAs pHEMT technology

Wu Chia-Song and Liu Hsing-Chung

+ Author Affilications + Find other works by these authors

PDF

Abstract: This paper investigates the feasibility of using a lanthanum oxide thin film (La2O3) with a high dielectric constant as a gate dielectric on GaAs pHEMTs to reduce gate leakage current and improve the gate to drain breakdown voltage relative to the conventional GaAs pHEMT. An E/D mode pHEMT in a single chip was realized by selecting the appropriate La2O3 thickness. The thin La2O3 film was characterized: its chemical composition and crystalline structure were determined by X-ray photoelectron spectroscopy and X-ray diffraction, respectively. La2O3 exhibited good thermal stability after post-deposition annealing at 200, 400 and 600 ℃ because of its high binding-energy (835.6 eV). Experimental results clearly demonstrated that the La2O3 thin film was thermally stable. The DC and RF characteristics of Pt/La2O3/Ti/Au gate and conventional Pt/Ti/Au gate pHEMTs were examined. The measurements indicated that the transistor with the Pt/La2O3/Ti/Au gate had a higher breakdown voltage and lower gate leakage current. Accordingly, the La2O3 thin film is a potential high-k material for use as a gate dielectric to improve electrical performance and the thermal effect in high-power applications.

Key words: lanthanum oxide

[1]

Liao Jingning, Guo Chunsheng, Liu Pengfei, Wu Yuehua, Li Zhiguo. Reliability Model of Thin Oxide CMOS. J. Semicond., 2006, 27(S1): 257.

[2]

Ali Arif, Okba Belahssen, Salim Gareh, Said Benramache. The calculation of band gap energy in zinc oxide films. J. Semicond., 2015, 36(1): 013001. doi: 10.1088/1674-4926/36/1/013001

[3]

Yue Shuanglin, Xu Tingting, Li Wei, Yan Ji, Yi He. Tungsten oxide nanostructures: controllable growth and field emission. J. Semicond., 2012, 33(6): 063002. doi: 10.1088/1674-4926/33/6/063002

[4]

Dong Limin, Guo Xia, Qu Hongwei, Deng Jun, Du Jinyu, Zou Deshu, Shen Guangdi. Kinetics of Growth of AlAs/AlGaAs Oxide in Cylindrical Mesa. J. Semicond., 2005, 26(S1): 281.

[5]

Haonan Zhang, Ming Zhuo, Yazi Luo, Yuejiao Chen. Mesoporous tin oxide nanospheres for a NOx in air sensor. J. Semicond., 2017, 38(2): 023003. doi: 10.1088/1674-4926/38/2/023003

[6]

Xutang Tao. Bulk gallium oxide single crystal growth. J. Semicond., 2019, 40(1): 010401. doi: 10.1088/1674-4926/40/1/010401

[7]

Yue Hao. Gallium oxide: promise to provide more efficient life. J. Semicond., 2019, 40(1): 010301. doi: 10.1088/1674-4926/40/1/010301

[8]

Han Weiqing, Zhou Gang, Wang Lianjun, Sun Xiuyun, Li Jiansheng. Fabrication of Tin Oxide Porous Nanostructures on Titanium by Anodization and Electroplating. J. Semicond., 2006, 27(12): 2134.

[9]

S.S. Shinde, C.H. Bhosale, K.Y. Rajpure. Solar light assisted photocatalysis of water using a zinc oxide semiconductor. J. Semicond., 2013, 34(4): 043002. doi: 10.1088/1674-4926/34/4/043002

[10]

Tadatsugu Minami, Yuki Nishi, Toshihiro Miyata. Cu2O-based solar cells using oxide semiconductors. J. Semicond., 2016, 37(1): 014002. doi: 10.1088/1674-4926/37/1/014002

[11]

Wang Jing, Huang Qing'an, Yu Hong. Effect of Native Oxide on Elasticity of a Silicon Nano-Plate. J. Semicond., 2007, 28(7): 1048.

[12]

Jiang Yibo, Du Huan, Zeng Chuanbin, Han Zhengsheng. ESD protection design for the gate oxide of an RF-LDMOS. J. Semicond., 2012, 33(4): 044007. doi: 10.1088/1674-4926/33/4/044007

[13]

Hu Shigang, Hao Yue, Ma Xiaohua, Cao Yanrong, Chen Chi, Wu Xiaofeng. Degradation of nMOS and pMOSFETs with Ultrathin Gate Oxide Under DT Stress. J. Semicond., 2008, 29(11): 2136.

[14]

Muhammad Tariq Saeed Chani, Sher Bahadar Khan, Kh. S. Karimov, M. Abid, Abdullah M. Asiri, Kalsoom Akhtar. Synthesis of metal oxide composite nanosheets and their pressure sensing properties. J. Semicond., 2015, 36(2): 023002. doi: 10.1088/1674-4926/36/2/023002

[15]

Bao Li, Bao Junlin, Zhuang Yiqi. A Method for Locating the Position of an Oxide Trap in a MOSFET by RTS Noise. J. Semicond., 2006, 27(8): 1426.

[16]

Yongli He, Xiangyu Wang, Ya Gao, Yahui Hou, Qing Wan. Oxide-based thin film transistors for flexible electronics. J. Semicond., 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005

[17]

Zhou Jianping, Chai Chunlin, Yang Shaoyan, Liu Zhikai, Song Shulin, Li Yanli, Chen Nuofu, Lin Yuanhua. Effect of Ion Energy and Substrate Temperature on Gadolinium Oxide Structure. J. Semicond., 2005, 26(S1): 57.

[18]

Xiaoyu Chen, Hao Wang, Gongchen Sun, Xiaoyu Ma, Jianguang Gao, Wengang Wu. Resistive switching characteristic of electrolyte-oxide-semiconductor structures. J. Semicond., 2017, 38(8): 084003. doi: 10.1088/1674-4926/38/8/084003

[19]

Ma Junwei, Ran Feng, Xu Meihua, Ji Huijie. Influence of substrate temperature on the performance of zinc oxide thin film transistor. J. Semicond., 2011, 32(4): 044002. doi: 10.1088/1674-4926/32/4/044002

[20]

Guo Yufeng, Li Zhaoji, Zhang Bo, Liu Yong. Fabrication of a Novel SOI Material with Non-Planar Buried Oxide Layer. J. Semicond., 2007, 28(9): 1415.

Search

Advanced Search >>

GET CITATION

Wu C S, Liu H C. Structural and electrical characteristics of lanthanum oxide gate dielectric film on GaAs pHEMT technology[J]. J. Semicond., 2009, 30(11): 114004. doi: 10.1088/1674-4926/30/11/114004.

Export: BibTex EndNote

Article Metrics

Article views: 2229 Times PDF downloads: 3056 Times Cited by: 0 Times

History

Manuscript received: 18 August 2015 Manuscript revised: 26 June 2009 Online: Published: 01 November 2009

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误