J. Semicond. > Volume 30 > Issue 2 > Article Number: 024004

Accurate and fast table look-up models for leakage current analysis in 65 nm CMOS technology

Xue Jiying , Li Tao and Yu Zhiping

+ Author Affiliations + Find other works by these authors

PDF

Abstract: Novel physical models for leakage current analysis in 65 nm technology are proposed. Taking into consideration the process variations and emerging effects in nano-scaled technology, the presented models are capable of accurately estimating the subthreshold leakage current and junction tunneling leakage current in 65??nm technology. Based on the physical models, new table look-up models are developed and first applied to leakage current analysis in pursuit of higher simulation speed. Simulation results show that the novel physical models are in excellent agreement with the data measured from the foundry in the 65 nm process, and the proposed table look-up models can provide great computational efficiency by using suitable interpolation techniques. Compared with the traditional physical-based models, the table look-up models can achieve 2.5X speedup on average on a variety of industry circuits.

Key words: leakage current 65?nm technology table look-up model interpolation

[1]

Zhaonian Yang, Hongxia Liu, Shulong Wang. A low leakage power-rail ESD detection circuit with a modified RC network for a 90-nm CMOS process. J. Semicond., 2013, 34(4): 045010. doi: 10.1088/1674-4926/34/4/045010

[2]

Guo Baozeng, Gong Na, Wang Jinhui. Designing Leakage-Tolerant and Noise-Immune Enhanced Low Power Wide OR Dominos in Sub-70nm CMOS Technologies. J. Semicond., 2006, 27(5): 804.

[3]

Wang Jinhui, Gong Na, Feng Shoubo, Duan Liying, Hou Ligang, Wu Wuchen, Dong Limin. A Novel p-Type Domino AND Gate Design for Sub-65nm CMOS Technologies. J. Semicond., 2007, 28(11): 1818.

[4]

Jun Ma, Yawei Guo, Yue Wu, Xu Cheng, Xiaoyang Zeng. A 1-V 10-bit 80-MS/s 1.6-mW SAR ADC in 65-nm GP CMOS. J. Semicond., 2013, 34(8): 085014. doi: 10.1088/1674-4926/34/8/085014

[5]

Bu Jianhui, Bi Jinshun, Liu Mengxin, Han Zhengsheng. A total dose radiation model for deep submicron PDSOI NMOS. J. Semicond., 2011, 32(1): 014002. doi: 10.1088/1674-4926/32/1/014002

[6]

O.Ya Olikh, K.V. Voitenko, R.M. Burbelo, JaM. Olikh. Effect of ultrasound on reverse leakage current of silicon Schottky barrier structure. J. Semicond., 2016, 37(12): 122002. doi: 10.1088/1674-4926/37/12/122002

[7]

Wanjun Chen, Jing Zhang, Bo Zhang, Kevin Jing Chen . Fluorine-plasma surface treatment for gate forward leakage current reduction in AlGaN/GaN HEMTs. J. Semicond., 2013, 34(2): 024003. doi: 10.1088/1674-4926/34/2/024003

[8]

Huaguo Liang, Hui Xu, Zhengfeng Huang, Maoxiang Yi. A low-leakage and NBTI-mitigated N-type domino logic. J. Semicond., 2014, 35(1): 015009. doi: 10.1088/1674-4926/35/1/015009

[9]

Gong Na, Wang Jinhui, Guo Baozeng, Pang Jiao. Temperature and Process Variations Aware Dual Threshold Voltage Footed Domino Circuits Leakage Management. J. Semicond., 2008, 29(12): 2364.

[10]

Jianwei Wu, Zongguang Yu, Genshen Hong, Rubin Xie. Design of GGNMOS ESD protection device for radiation-hardened 0.18 μm CMOS process. J. Semicond., 2020, 41(12): 122403. doi: 10.1088/1674-4926/41/12/122403

[11]

Junjun Yuan, Zebo Fang, Yanyan Zhu, Bo Yao, Shiyan Liu, Gang He, Yongsheng Tan. Current mechanism and band alignment of Al(Pt)/HfGdO/Ge capacitors. J. Semicond., 2016, 37(3): 034006. doi: 10.1088/1674-4926/37/3/034006

[12]

Chen Liu, Yuming Zhang, Yimen Zhang, Hongliang Lü, Bin Lu. Temperature dependent interfacial and electrical characteristics during atomic layer deposition and annealing of HfO2 films in p-GaAs metal-oxide-semiconductor capacitors. J. Semicond., 2015, 36(12): 124003. doi: 10.1088/1674-4926/36/12/124003

[13]

Neha Gupta, Priyanka Parihar, Vaibhav Neema. Application of source biasing technique for energy efficient DECODER circuit design: memory array application. J. Semicond., 2018, 39(4): 045001. doi: 10.1088/1674-4926/39/4/045001

[14]

Jin Guofen, Wu Huizhen, Liang Jun, Lao yanfeng, Yu Ping, Xu Tianning. Electrical Characteristics of Cubic ZnMgO. J. Semicond., 2007, 28(S1): 167.

[15]

Xiuwen Bi, Hailian Liang, Xiaofeng Gu, Long Huang. Design of novel DDSCR with embedded PNP structure for ESD protection. J. Semicond., 2015, 36(12): 124007. doi: 10.1088/1674-4926/36/12/124007

[16]

Gao Yong, Liu Jing, Ma Li, Yu Mingbin. Numerical Simulation and Analysis of SiGeC/Si Heterojunction Power Diodes. J. Semicond., 2006, 27(6): 1068.

[17]

Wang Chong, Zhang Jinfeng, , Yang Yan, Hao Yue, Feng Qian. Temperature Characteristics of AlGaN/GaN HEMTs Using C-Vand TLM for Evaluating Temperatures. J. Semicond., 2006, 27(5): 864.

[18]

Qi Zhao, Ran Li, Dong Qiu, Ting Yi, Yang Liu Bill, Zhiliang Hong. A 14-bit 1-GS/s DAC with a programmable interpolation filter in 65 nm CMOS. J. Semicond., 2013, 34(2): 025004. doi: 10.1088/1674-4926/34/2/025004

[19]

S Chakraborty, A Dasgupta, R Das, M Kar, A Kundu, C K Sarkar. Device and circuit analysis of a sub 20 nm double gate MOSFET with gate stack using a look-up-table-based approach. J. Semicond., 2017, 38(12): 124001. doi: 10.1088/1674-4926/38/12/124001

[20]

R. K. Singh, Neeraj Kr. Shukla, Manisha Pattanaik. Gate leakage current reduction in IP3 SRAM cells at 45 nm CMOS technology for multimedia applications. J. Semicond., 2012, 33(5): 055001. doi: 10.1088/1674-4926/33/5/055001

Search

Advanced Search >>

GET CITATION

Xue J Y, Li T, Yu Z P. Accurate and fast table look-up models for leakage current analysis in 65 nm CMOS technology[J]. J. Semicond., 2009, 30(2): 024004. doi: 10.1088/1674-4926/30/2/024004.

Export: BibTex EndNote

Article Metrics

Article views: 3208 Times PDF downloads: 2164 Times Cited by: 0 Times

History

Manuscript received: 18 August 2015 Manuscript revised: 22 September 2008 Online: Published: 01 February 2009

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误