J. Semicond. > Volume 30 > Issue 9 > Article Number: 094004

Influence of a tilted cavity on quantum-dot optoelectronic active devices

Liu Wanglai , Xu Bo , Liang Ping , Hu Ying , Sun Hong , Lu Xueqin and Wang Zhanguo

+ Author Affilications + Find other works by these authors


Abstract: Abstract: Quantum-dot laser diodes (QD-LDs) with a Fabry–Perot cavity and quantum-dot semiconductor optical amplifiers (QD-SOAs) with 7° tilted cavity were fabricated. The influence of a tilted cavity on optoelectronic active devices was also investigated. For the QD-LD, high performance was observed at room temperature. The threshold current was below 30 mA and the slope efficiency was 0.36 W/A. In contrast, the threshold current of the QD-SOA approached 1000 mA, which indicated that low facet reflectivity was obtained due to the tilted cavity design. A much more inverted carrier population was found in the QD-SOA active region at high operating current, thus offering a large optical gain and preserving the advantages of quantum dots in optical amplification and processing applications. Due to the inhomogeneity and excited state transition of quantum dots, the full width at half maximum of the electroluminescence spectrum of the QD-SOA was 81.6 nm at the injection current of 120 mA, which was ideal for broad bandwidth application in a wavelength division multiplexing system. In addition, there was more than one lasing peak in the lasing spectra of both devices and the separation of these peak positions was 6–8 nm, which is approximately equal to the homogeneous broadening of quantum dots.

Key words: quantum dot


Zhong Qinghu, Yi Xuehua. Electron Raman scattering in a cylindrical quantum dot. J. Semicond., 2012, 33(5): 052001. doi: 10.1088/1674-4926/33/5/052001


A. J. Fotue, N. Issofa, M. Tiotsop, S. C. Kenfack, M. P. Tabue Djemmo, H. Fotsin, L. C. Fai. Electric and magnetic optical polaron in quantum dot——Part 1: strong coupling. J. Semicond., 2015, 36(7): 072001. doi: 10.1088/1674-4926/36/7/072001


Yin Jiwen, Yu Yifu, Xiao Jinglin. Temperature Dependence of Strong-Coupling Bound Magnetopolaron in a Quantum Dot. J. Semicond., 2006, 27(12): 2123.


A. Nasr, A. Aly. Theoretical investigation of some parameters into the behavior of quantum dot solar cells. J. Semicond., 2014, 35(12): 124001. doi: 10.1088/1674-4926/35/12/124001


Li Weiping, Xiao Jinglin. Influence of Coulomb Potential on the Properties of a Polaron in a Quantum Dot. J. Semicond., 2007, 28(8): 1187.


Shihua Chen. Magnetopolaron effects on the optical absorptions in a parabolic quantum dot. J. Semicond., 2016, 37(9): 092004. doi: 10.1088/1674-4926/37/9/092004


P. Christina Lily Jasmine, A. John Peter. Magneto-polaron induced intersubband optical transition in a wide band gap II—VI semiconductor quantum dot. J. Semicond., 2015, 36(3): 032001. doi: 10.1088/1674-4926/36/3/032001


A. J. Fotue, S. C. Kenfack, N. Issofa, M. Tiotsop, H. Fotsin, E. Mainimo, L. C. Fai. Energy levels of magneto-optical polaron in spherical quantum dot——Part 1: Strong coupling. J. Semicond., 2015, 36(9): 092001. doi: 10.1088/1674-4926/36/9/092001


Zhang Bin, Yan Zuwei, Zhang Min. Bound polaron in a strained wurtzite GaN/AlxGa1-xN cylindrical quantum dot. J. Semicond., 2011, 32(6): 062003. doi: 10.1088/1674-4926/32/6/062003


M. Tiotsop, A. J. Fotue, S. C. Kenfack, N. Issofa, A. V. Wirngo, M. P. Tabue Djemmo, H. Fotsin, L. C. Fai. Electro-magnetic weak coupling optical polaron and temperature effect in quantum dot. J. Semicond., 2015, 36(10): 102001. doi: 10.1088/1674-4926/36/10/102001


D. Lalitha, A. John Peter. Effect of p-d exchange with an itinerant carrier in a GaMnAs quantum dot. J. Semicond., 2013, 34(7): 072001. doi: 10.1088/1674-4926/34/7/072001


Chen Shihua. Properties of the two- and three-dimensional quantum dot qubit. J. Semicond., 2010, 31(5): 052001. doi: 10.1088/1674-4926/31/5/052001


Jiwen Yin, Weiping Li, Yifu Yu. Properties of a polaron in a quantum dot:a squeezed-state variational approach. J. Semicond., 2013, 34(1): 012001. doi: 10.1088/1674-4926/34/1/012001


Chen Zuozi, Lu Haizhou, Lü Rong, . Effect of Electron-Phonon Interaction on NonequilibriumTransport in Quantum Dot Systems. J. Semicond., 2006, 27(S1): 44.


Xiaosheng Qu, Sisi Zhang, Hongyin Bao, Liling Xiong. The effect of InAs quantum-dot size and interdot distance on GaInP/GaAs/GaInAs/Ge multi-junction tandem solar cells. J. Semicond., 2013, 34(6): 062003. doi: 10.1088/1674-4926/34/6/062003


Niu Zhichuan, Ni Haiqiao, Fang Zhidan, Gong Zheng, Zhang Shiyong, Wu Donghai, Sun Zheng, Zhao Huan, Peng Hongling, Han Qin, Wu Ronghan. 1.3μm InGaAs/InAs/GaAs Self-Assembled Quantum Dot Laser Diode Grown by Molecular Beam Epitaxy. J. Semicond., 2006, 27(3): 482.


Zhao Jian, Chen Yonghai, Wang Zhanguo, Xu Bo. Growth of InAs/GaAs Quantum Dots and Quantum Rings by Droplet Epitaxy Based on Patterned Substrate. J. Semicond., 2008, 29(10): 2003.


Ge Chuannan, Wen Jun, Peng Ju, Wang Baigeng. Transport Properties of Two Coupled Quantum Dots Under Optical Pumping. J. Semicond., 2006, 27(4): 598.


Liu Yumin, Yu Zhongyuan, Yang Hongbo, Huang Yongzhen. Influences of Differently Shaped Quantum Dots on Elastic Strain Field Distributions. J. Semicond., 2005, 26(12): 2355.


Yu Like, Xu Bo, Wang Zhanguo, Jin Peng, Zhao Chang, Lei Wen, Hu Liangjun, Liu Ning. Formation Process of S-K Quantum Dots. J. Semicond., 2006, 27(S1): 80.


Advanced Search >>


Liu W L, Xu B, Liang P, Hu Y, Sun H, Lu X Q, Wang Z G. Influence of a tilted cavity on quantum-dot optoelectronic active devices[J]. J. Semicond., 2009, 30(9): 094004. doi: 10.1088/1674-4926/30/9/094004.

Export: BibTex EndNote

Article Metrics

Article views: 2440 Times PDF downloads: 1827 Times Cited by: 0 Times


Manuscript received: 18 August 2015 Manuscript revised: 30 April 2009 Online: Published: 01 September 2009

Email This Article

User name: