J. Semicond. > Volume 31 > Issue 2 > Article Number: 024006

An MWCNT-doped SnO2 thin film NO2 gas sensor by RF reactive magnetron sputtering

Lin Wei , Huang Shizhen and Chen Wenzhe

+ Author Affilications + Find other works by these authors


Abstract: An MWCNT-doped (multi-walled carbon nanotube) SnO2 thin film NO2 gas sensor, prepared by radio frequency reactive magnetron sputtering, showed a high sensitivity to ultra-low concentrations of NO2 in the parts per billion range. X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy (SEM) characterizations indicated that the MWCNTs were affected by the morphology of the SnO2 thin film and the particle size. The properties of the MWCNT-doped SnO2 sensor, such as sensitivity, selectivity, and response-recovery time, were investigated. Experimental results revealed that the MWCNT-doped SnO2 thin film sensor response to NO2 gas depended on the operating temperature, NO2 gas concentration, thermal treatment conditions, film thickness, and so on. The mechanism of the gas-sensing property of the MWCNT-doped SnO2 thin film sensor was investigated and showed that the improved gas-sensing performance should be attributed to the effects between MWCNTs (p-type) and SnO2 (n-type) semiconductors.

Key words: SnO2 multi-walled carbon nanotube RF reactive magnetron sputtering NO2 sensor


Fan Huitao, Zhang Tong, Qi Qi, Liu Li. Preparation and C2H2 Sensing Characteristics of Sm2O3-Doped SnO2 Gas Sensors. J. Semicond., 2008, 29(2): 319.


Olivia M. Berengue, Adenilson J. Chiquito. Direct evidence of traps controlling the carriers transport in SnO2 nanobelts. J. Semicond., 2017, 38(12): 122001. doi: 10.1088/1674-4926/38/12/122001


Xuefen Cai, Peng Zhang, Su-Huai Wei. Revisit of the band gaps of rutile SnO2 and TiO2: a first-principles study. J. Semicond., 2019, 40(9): 092101. doi: 10.1088/1674-4926/40/9/092101


Achour Rahal, Said Benramache, Boubaker Benhaoua. The effect of the film thickness and doping content of SnO2:F thin films prepared by the ultrasonic spray method. J. Semicond., 2013, 34(9): 093003. doi: 10.1088/1674-4926/34/9/093003


Nitin Kumar, Bhawana Joshi, K. Asokan. Influence of deposition rate on the structural, optical and electrical properties of electron beam evaporated SnO2 thin films for transparent conducting electrode applications. J. Semicond., 2018, 39(8): 083002. doi: 10.1088/1674-4926/39/8/083002


Ding Ruixue, Yang Yintang, Liu Lianxi. Working mechanism of a SiC nanotube NO2 gas sensor. J. Semicond., 2009, 30(11): 114010. doi: 10.1088/1674-4926/30/11/114010


Wang Bing, Xu Ping, Yang Guowei. Low-Temperature Growth and Photoluminescence of SnO2 Nanowires. J. Semicond., 2008, 29(8): 1469.


Wang Zhanhe, Wu Haixia, , Jiang Yujing, Xing Maoteng. Crystalline Properties of Nanocrystalline SnO2 Thin Films. J. Semicond., 2003, 24(S1): 110.


Achour Rahal, Said Benramache, Boubaker Benhaoua. Preparation of n-type semiconductor SnO2 thin films. J. Semicond., 2013, 34(8): 083002. doi: 10.1088/1674-4926/34/8/083002


Meng Hui, Wang Cong. Growth and Characterization of Zn Doped SnO2 Nanowires. J. Semicond., 2007, 28(S1): 267.


Liu Xiaowei, Zhao Zhengang, Li Tuo, Wang Xin. Novel capacitance-type humidity sensor based on multi-wall carbon nanotube/SiO2 composite films. J. Semicond., 2011, 32(3): 034006. doi: 10.1088/1674-4926/32/3/034006


Shadia. J. Ikhmayies, Riyad N Ahmad-Bitar. Using I-V characteristics to investigate selected contacts for SnO2:F thin films. J. Semicond., 2012, 33(8): 083001. doi: 10.1088/1674-4926/33/8/083001


Zheng Lou, Xiaoli Yang, Haoran Chen, Zhongzhu Liang. Flexible ultraviolet photodetectors based on ZnO–SnO2 heterojunction nanowire arrays. J. Semicond., 2018, 39(2): 024002. doi: 10.1088/1674-4926/39/2/024002


Guipeng Sun, Jinliang Yan, Peijiang Niu, Delan Meng. Electronic structure and optical property of p-type Zn-doped SnO2 with Sn vacancy. J. Semicond., 2016, 37(2): 023005. doi: 10.1088/1674-4926/37/2/023005


H. Bendjedidi, A. Attaf, H. Saidi, M. S. Aida, S. Semmari, A. Bouhdjar, Y. Benkhetta. Properties of n-type SnO2 semiconductor prepared by spray ultrasonic technique for photovoltaic applications. J. Semicond., 2015, 36(12): 123002. doi: 10.1088/1674-4926/36/12/123002


A. R. Babar, S. S. Shinde, A. V. Moholkar, C. H. Bhosale, K. Y. Rajpure. Structural and optoelectronic properties of sprayed Sb:SnO2 thin films: Effects of substrate temperature and nozzle-to-substrate distance. J. Semicond., 2011, 32(10): 102001. doi: 10.1088/1674-4926/32/10/102001


Liu Jianjun, Yan Jinliang, Shi Liang, Li Ting. Electrical and optical properties of deep ultraviolet transparent conductive Ga2O3/ITO films by magnetron sputtering. J. Semicond., 2010, 31(10): 103001. doi: 10.1088/1674-4926/31/10/103001


Hong Li, Hongbin Pu, Chunlei Zheng, Zhiming Chen. β-FeSi2 films prepared on 6H-SiC substrates by magnetron sputtering. J. Semicond., 2015, 36(6): 063005. doi: 10.1088/1674-4926/36/6/063005


Xiao Qingquan, Xie Quan, Chen Qian, Zhao Kejie, Yu Zhiqiang, Shen Xiangqian. Annealing effects on the formation of semiconducting Mg2Si film using magnetron sputtering deposition. J. Semicond., 2011, 32(8): 082002. doi: 10.1088/1674-4926/32/8/082002


Wu Jiangyan, Yan Jinliang, Yue Wei, Li Ting. Structural and optical properties of Zn3N2 films prepared by magnetron sputtering in NH3-Ar mixture gases. J. Semicond., 2012, 33(4): 043001. doi: 10.1088/1674-4926/33/4/043001


Advanced Search >>


Lin W, Huang S Z, Chen W Z. An MWCNT-doped SnO2 thin film NO2 gas sensor by RF reactive magnetron sputtering[J]. J. Semicond., 2010, 31(2): 024006. doi: 10.1088/1674-4926/31/2/024006.

Export: BibTex EndNote

Article Metrics

Article views: 2320 Times PDF downloads: 2635 Times Cited by: 0 Times


Manuscript received: 18 August 2015 Manuscript revised: 21 September 2009 Online: Published: 01 February 2010

Email This Article

User name: