[1] |
Elyes Garoudja, Walid Filali, Slimane Oussalah, Noureddine Sengouga, Mohamed Henini.
Comparative study of various methods for extraction of multi- quantum wells Schottky diode parameters.
J. Semicond.,
2020, 41(10): 102401.
doi: 10.1088/1674-4926/41/10/102401
|
[2] |
Chen Gang, Li Zheyang, Bai Song, Ren Chunjiang.
Ti/4H-SiC Schottky Barrier Diodes with Field Plate and B+ Implantation Edge Termination Technology.
J. Semicond.,
2007, 28(9): 1333.
|
[3] |
Guo Wenge, Zhang Yancao, Zheng Jianbang, Ren Ju.
Investigation of a Type of Organic/Metal Schottky Diode.
J. Semicond.,
2006, 27(3): 545.
|
[4] |
Mutabar Shah, M. H. Sayyad, Kh. S. Karimov.
Electrical characterization of the organic semiconductor Ag/CuPc/Au Schottky diode.
J. Semicond.,
2011, 32(4): 044001.
doi: 10.1088/1674-4926/32/4/044001
|
[5] |
Lucky Agarwal, Shweta Tripathi, P. Chakrabarti.
Analysis of structural, optical and electrical properties of metal/p-ZnO-based Schottky diode.
J. Semicond.,
2017, 38(10): 104002.
doi: 10.1088/1674-4926/38/10/104002
|
[6] |
M. A. Yeganeh, S. H. Rahmatollahpur.
Barrier height and ideality factor dependency on identically produced small Au/p-Si Schottky barrier diodes.
J. Semicond.,
2010, 31(7): 074001.
doi: 10.1088/1674-4926/31/7/074001
|
[7] |
Kamal Zeghdar, Lakhdar Dehimi, Achour Saadoune, Nouredine Sengouga.
Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode.
J. Semicond.,
2015, 36(12): 124002.
doi: 10.1088/1674-4926/36/12/124002
|
[8] |
Zhang Shuang, Guo Shuxu, Guo Xin, Cao Junsheng, Gao Fengli, Shan Jiangdong, Ren Ruizhi.
Extrinsic Ideality Factor of Laser Array.
J. Semicond.,
2007, 28(5): 768.
|
[9] |
Li Xiyue, Deng Wanling, Huang Junkai.
A physical surface-potential-based drain current model for polysilicon thin-film transistors.
J. Semicond.,
2012, 33(3): 034005.
doi: 10.1088/1674-4926/33/3/034005
|
[10] |
Sh. G. Askerov, L. K. Abdullayeva, M. G. Hasanov.
Study of electrophysical properties of metal–semiconductor contact by the theory of complex systems.
J. Semicond.,
2020, 41(10): 102101.
doi: 10.1088/1674-4926/41/10/102101
|
[11] |
Xiaoyu Ma, Wanling Deng, Junkai Huang.
Explicit solution of channel potential and drain current model in symmetric double-gate polysilicon TFTs.
J. Semicond.,
2014, 35(3): 032002.
doi: 10.1088/1674-4926/35/3/032002
|
[12] |
M. Yeganeh, N. Balkanian, Sh. Rahmatallahpur.
Nanoscale potential barrier distributions and their effect on current transport in Ni/n type Si Schottky diode.
J. Semicond.,
2015, 36(12): 124001.
doi: 10.1088/1674-4926/36/12/124001
|
[13] |
Yongshun Wang, Li Rui, Adnan Ghaffar, Zaixing Wang, Chunjuan Liu.
Improvements on high voltage capacity and high temperature performances of Si-based Schottky potential barrier diode.
J. Semicond.,
2015, 36(2): 024013.
doi: 10.1088/1674-4926/36/2/024013
|
[14] |
Deng Wanling, Zheng Xueren.
Modeling of self-heating effects in polycrystalline silicon thin film transistors.
J. Semicond.,
2009, 30(7): 074002.
doi: 10.1088/1674-4926/30/7/074002
|
[15] |
Liu Zhongqi, Sun Xuguang, Bai Rongrong, Zhang Chun, Li Yongming, Wang Zhihua.
A Passive NCITS 256 UHF RFID Transponder.
J. Semicond.,
2008, 29(4): 719.
|
[16] |
Lu Jingxue, Huang Fengyi, Wang Zhigong, Wu Wengang.
Refinement of an Analytical Approximation of the Surface Potential in MOSFETs.
J. Semicond.,
2006, 27(7): 1155.
|
[17] |
Xu Wenjie, Sun Lingling, Liu Jun, Li Wenjun, Zhang Haipeng, Wu Yanming, He Jia.
A Continuous and Analytical Surface Potential Model for SOI LDMOS.
J. Semicond.,
2007, 28(11): 1712.
|
[18] |
Jie Wang, Lingling Sun, Jun Liu, Mingzhu Zhou.
A surface-potential-based model for AlGaN/AlN/GaN HEMT.
J. Semicond.,
2013, 34(9): 094002.
doi: 10.1088/1674-4926/34/9/094002
|
[19] |
Jian Qin, Ruohe Yao.
Modeling of current-voltage characteristics for dual-gate amorphous silicon thin-film transistors considering deep Gaussian density-of-state distribution.
J. Semicond.,
2015, 36(12): 124005.
doi: 10.1088/1674-4926/36/12/124005
|
[20] |
Purnima Hazra, S. Jit.
A p-silicon nanowire/n-ZnO thin film heterojunction diode prepared by thermal evaporation.
J. Semicond.,
2014, 35(1): 014001.
doi: 10.1088/1674-4926/35/1/014001
|