J. Semicond. > Volume 32 > Issue 6 > Article Number: 062002

Transmission line model of carbon nanotubes: through the Boltzmann transport equation

Fang Zhou

+ Author Affilications + Find other works by these authors

PDF

Abstract: A transmission line (TL) model of a carbon nanotube (CNT) is analyzed through the Boltzmann transport equation (BTE). With the help of a numerical solution of the BTE, we study the kinetic inductance (LK), quantum capacitance (CQ) and resistivity (RS) of a CNT under a high frequency electric field. Values of LK and CQ obtained from BTE accord with the theoretical values, and the TL model is verified by transport theory for the first time. Moreover, our results show that the AC resistivity of CNTs deviates from DC, increasing along with shorter electric field wave length. This shows that changes in RS in the high frequency condition must be considered in the TL model.

Key words: carbon nanotube

[1]

Chen Shaofeng, Xia Shanhong, Song Qinglin, Hu Ping' an, Liu Yunqi, Zhu Daoben. Properties of Carbon Nanotube Field Emission. J. Semicond., 2003, 24(S1): 166.

[2]

Amandeep Singh, Dinesh Kumar Saini, Dinesh Agarwal, Sajal Aggarwal, Mamta Khosla, Balwinder Raj. Modeling and simulation of carbon nanotube field effect transistor and its circuit application. J. Semicond., 2016, 37(7): 074001. doi: 10.1088/1674-4926/37/7/074001

[3]

Xiao Xiaojing, Ye Yun, Zheng Longwu, Guo Tailiang. Improved field emission properties of carbon nanotube cathodes by nickel electroplating and corrosion. J. Semicond., 2012, 33(5): 053004. doi: 10.1088/1674-4926/33/5/053004

[4]

Li Xin, He Yongning, Liu Weihua, Zhu Changchun. Improving Carbon Nanotube Field Emission Display Luminescence Uniformity by Introducing a Reactive Current Limiting Layer. J. Semicond., 2008, 29(3): 574.

[5]

Tanu Goyal, Manoj Kumar Majumder, Brajesh Kumar Kaushik. Propagation delay and power dissipation for different aspect ratio of single-walled carbon nanotube bundled TSV. J. Semicond., 2015, 36(6): 065001. doi: 10.1088/1674-4926/36/6/065001

[6]

Jingxia Wu, Yang Hong, Bingjie Wang. The applications of carbon nanomaterials in fiber-shaped energy storage devices. J. Semicond., 2018, 39(1): 011004. doi: 10.1088/1674-4926/39/1/011004

[7]

Zhonghua Yang, Guili Liu, Yingdong Qu, Rongde Li. First-principle study on energy gap of CNT superlattice structure. J. Semicond., 2015, 36(10): 102002. doi: 10.1088/1674-4926/36/10/102002

[8]

Harsimran Kaur, Karamjit Singh Sandha. Effect of electric field on metallic SWCNT interconnects for nanoscale technologies. J. Semicond., 2015, 36(3): 035001. doi: 10.1088/1674-4926/36/3/035001

[9]

Xue Zengguan, Zhang Qifeng, Song Jiaohua, Guo Dengzhu, Liang Xuelei, Shen Zhiyong, Chen Qing, Gao Song, Zhang Gengmin, Zhao Xingyu, Liu Weimin, Peng Lianmao, Wu Jinlei, Wu Quande. Nanoelectronics. J. Semicond., 2003, 24(S1): 17.

[10]

Feng Tao, Li Qiong, Zhang Jihua, Yu Weidong, Liu Xianghuai, Wang Xi, Xu Jingfang, Zou Shichang. Development of Three-Color Carbon Nanotube Field Emission Light. J. Semicond., 2003, 24(S1): 161.

[11]

Liu Hongxia, Zhang Heming, Song Jiuxu, Zhang Zhiyong. Electronic structures of an (8, 0) boron nitride/carbon nanotube heterojunction. J. Semicond., 2010, 31(1): 013001. doi: 10.1088/1674-4926/31/1/013001

[12]

Song Jiuxu, Yang Yintang, Liu Hongxia, Guo Lixin. Negative differential resistance in an (8, 0) carbon/boron nitride nanotube heterojunction. J. Semicond., 2011, 32(4): 042003. doi: 10.1088/1674-4926/32/4/042003

[13]

Peng Lianmao, Chen Ging, Liang Xuelei, Che Renchao, Xia Yang, Xue Zengguan, Wu Quande. Fabrication and characteristics of metal particle modulated carbon Nanotube Field-effect and single Electron transistors. J. Semicond., 2003, 24(S1): 170.

[14]

Guili Liu, Yan Jiang, Yuanyuan Song, Shuang Zhou, Tianshuang Wang. Influence of tension-twisting deformations and defects on optical and electrical properties of B, N doped carbon nanotube superlattices. J. Semicond., 2016, 37(6): 063004. doi: 10.1088/1674-4926/37/6/063004

[15]

Liu Hongxia, Zhang Heming, Zhang Zhiyong. Electronic transport properties of an (8, 0) carbon/silicon-carbide nanotube heterojunction. J. Semicond., 2009, 30(5): 052002. doi: 10.1088/1674-4926/30/5/052002

[16]

Qin Yuxiang, Hu Ming, Li Haiyan, Zhang Zhisheng, Zou Qiang. Preparation by a Low Temperature Method and the Field Emission Properties of Carbon Nanotube Cold Cathodes. J. Semicond., 2006, 27(8): 1417.

[17]

Zhou Hailiang, Hao Yue, Zhang Minxuan. Performance optimization of MOS-like carbon nanotube-FETs with realistic source/drain contacts based on electrostatic doping. J. Semicond., 2010, 31(12): 124005. doi: 10.1088/1674-4926/31/12/124005

[18]

Gang Li, Pengjun Wang, Yaopeng Kang, Yuejun Zhang. A low standby-power fast carbon nanotube ternary SRAM cell with improved stability. J. Semicond., 2018, 39(8): 085002. doi: 10.1088/1674-4926/39/8/085002

[19]

Liu Xiaowei, Zhao Zhengang, Li Tuo, Wang Xin. Novel capacitance-type humidity sensor based on multi-wall carbon nanotube/SiO2 composite films. J. Semicond., 2011, 32(3): 034006. doi: 10.1088/1674-4926/32/3/034006

[20]

Song Jiuxu, Yang Yintang, Liu Hongxia, Guo Lixin, Zhang Zhiyong. Electronic transport properties of the armchair silicon carbide nanotube. J. Semicond., 2010, 31(11): 114003. doi: 10.1088/1674-4926/31/11/114003

Search

Advanced Search >>

GET CITATION

Fang Z. Transmission line model of carbon nanotubes: through the Boltzmann transport equation[J]. J. Semicond., 2011, 32(6): 062002. doi: 10.1088/1674-4926/32/6/062002.

Export: BibTex EndNote

Article Metrics

Article views: 2192 Times PDF downloads: 2211 Times Cited by: 0 Times

History

Manuscript received: 18 August 2015 Manuscript revised: 22 December 2010 Online: Published: 01 June 2011

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误