J. Semicond. > Volume 33 > Issue 10 > Article Number: 103001

Effects of growth temperature on high-quality In0.2Ga0.8N layers by plasma-assisted molecular beam epitaxy

Zhang Dongyan , Zheng Xinhe , Li Xuefei , Wu Yuanyuan , Wang Jianfeng and Yang Hui

+ Author Affilications + Find other works by these authors

PDF

Abstract: High-quality In0.2Ga0.8N epilayers were grown on a GaN template at temperatures of 520 and 580℃ via plasma-assisted molecular beam epitaxy. The X-ray rocking curve full widths at half maximum (FWHM) of (10.2) reflections is 936 arcsec for the 50-nm-thick InGaN layers at the lower temperature. When the growth temperature increases to 580℃, the FWHM of (00.2) reflections for these samples is very narrow and keeps similar, while significant improvement of (10.2) reflections with an FWHM value of 612 arcsec has been observed. This improved quality in InGaN layers grown at 580℃ is also reflected by the much larger size of the crystalline column from the AFM results, stronger emission intensity as well as a decreased FWHM of room temperature PL from 136 to 93.9 meV.

Key words: InGaNPA-MBEqualitysolar cells

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[1]

Wen Bo, Zhou Jianjun, Jiang Ruolian, Xie Zili, Chen Dunjun, Ji Xiaoli, Han Ping, Zhang Rong, Zheng Youdou. Theoretical Calculation of Conversion Efficiency of InGaN Solar Cells. J. Semicond., 2007, 28(9): 1392.

[2]

Liang Jing, Hongling Xiao, Xiaoliang Wang, Cuimei Wang, Qingwen Deng, Zhidong Li, Jieqin Ding, Zhanguo Wang, Xun Hou. Enhanced performance of InGaN/GaN multiple quantum well solar cells with patterned sapphire substrate. J. Semicond., 2013, 34(12): 124004. doi: 10.1088/1674-4926/34/12/124004

[3]

Wang Lili, Wang Hui, Sun Xian, Wang Hai, Zhu Jianjun, Yang Hui, Liang Junwu. Influence of Temperature on MOCVD Growth of InGaN. J. Semicond., 2007, 28(S1): 257.

[4]

Wen Bo, Jiang Ruolian, Liu Chengxiang, Xie Zili, Zhou Jianjun, Han Ping, Zhang Rong, Zheng Youdou. Influence of Thermal Annealing on Properties of InGaN Films. J. Semicond., 2006, 27(S1): 92.

[5]

Yu Tongjun, Kang Xiangning, Qin Zhixin, Chen Zhizhong, Yang Zhijian, Hu Xiaodong, Zhang Guoyi. Strain Effect on Photoluminescence from InGaN/GaN and InGaN/AlGaN MQWs. J. Semicond., 2006, 27(S1): 20.

[6]

T. R. Lenka, G. N. Dash, A. K. Panda. RF and microwave characteristics of a 10 nm thick InGaN-channel gate recessed HEMT. J. Semicond., 2013, 34(11): 114003. doi: 10.1088/1674-4926/34/11/114003

[7]

Xiaojia Wan, Xiaoliang Wang, Hongling Xiao, Chun Feng, Lijuan Jiang, Shenqi Qu, Zhanguo Wang, Xun Hou. Investigation of the current collapse induced in InGaN back barrier AlGaN/GaN high electron mobility transistors. J. Semicond., 2013, 34(10): 104002. doi: 10.1088/1674-4926/34/10/104002

[8]

Ji Xiaoli, Yang Fuhua, Wang Junxi, Duan Ruifei, Ding Kai, Zeng Yiping, Wang Guohong, Li Jinmin. Luminescence distribution and hole transport in asymmetric InGaN multiple-quantum well light-emitting diodes. J. Semicond., 2010, 31(9): 094009. doi: 10.1088/1674-4926/31/9/094009

[9]

Xiaosheng Qu, Hongyin Bao, Hanieh. S. Nikjalal, Liling Xiong, Hongxin Zhen. An InGaAs graded buffer layer in solar cells. J. Semicond., 2014, 35(1): 014011. doi: 10.1088/1674-4926/35/1/014011

[10]

Li Chen, Xinliang Chen, Yiming Liu, Ying Zhao, Xiaodan Zhang. Research on ZnO/Si heterojunction solar cells. J. Semicond., 2017, 38(5): 054005. doi: 10.1088/1674-4926/38/5/054005

[11]

Chen Xinliang, Xue Junming, Sun Jian, Zhao Ying, Geng Xinhua. Growth of Textured ZnO Thin Films and Their Front Electrodes for Application in Solar Cells. J. Semicond., 2007, 28(7): 1072.

[12]

Liu Junpeng, Qu Shengchun, Zeng Xiangbo, Xu Ying, Chen Yonghai, Wang Zhijie, Zhou Huiying, Wang Zhanguo. Hybrid Organic/Inorganic Bulk Heteroj unction Solar Cells. J. Semicond., 2007, 28(S1): 364.

[13]

A. Nasr, A. Aly. Theoretical investigation of some parameters into the behavior of quantum dot solar cells. J. Semicond., 2014, 35(12): 124001. doi: 10.1088/1674-4926/35/12/124001

[14]

Xiaojun Qin, Zhiguo Zhao, Yidan Wang, Junbo Wu, Qi Jiang, Jingbi You. Recent progress in stability of perovskite solar cells. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002

[15]

Lou Chaogang, Yan Ting, Sun Qiang, Xu Jun, Zhang Xiaobing, Lei Wei. External Quantum Efficiency of Quantum Well Solar Cells. J. Semicond., 2008, 29(11): 2088.

[16]

Xing Zhao, Jia Rui, Ding Wuchang, Meng Yanlong, Jin Zhi, Liu Xinyu. Improving poor fill factors for solar cells via light-induced plating. J. Semicond., 2012, 33(9): 094008. doi: 10.1088/1674-4926/33/9/094008

[17]

Tang Yehua, Zhou Chunlan, Wang Wenjing, Zhou Su, Zhao Yan, Zhao Lei, Li Hailing, Yan Baojun, Chen Jingwei, Fei Jianming, Cao Hongbin. Characterization of the nanosized porous structure of black Si solar cells fabricated via a screen printing process. J. Semicond., 2012, 33(6): 064007. doi: 10.1088/1674-4926/33/6/064007

[18]

Zhang Qunfang, Zhu Meifang, Liu Fengzhen, Zhou Yuqin. High-Efficiency n-nc-Si:H/p-c-Si Heterojunction Solar Cells. J. Semicond., 2007, 28(1): 96.

[19]

Muhammad Nawaz, Ashfaq Ahmad. Influence of absorber doping in a-SiC:H/a-Si:H/a-SiGe:H solar cells. J. Semicond., 2012, 33(4): 042001. doi: 10.1088/1674-4926/33/4/042001

[20]

Chen Yongsheng, Yang Shi'e, Wang Jianhua, Lu Jingxiao, Gao Xiaoyong, Gu Jinhua, Zheng Wen, Zhao Shangli. Deposition of p-Type Microcrystalline Silicon Film and Its Application in Microcrystalline Silicon Solar Cells. J. Semicond., 2008, 29(11): 2130.

Search

Advanced Search >>

GET CITATION

Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang J F, Yang H. Effects of growth temperature on high-quality In0.2Ga0.8N layers by plasma-assisted molecular beam epitaxy[J]. J. Semicond., 2012, 33(10): 103001. doi: 10.1088/1674-4926/33/10/103001.

Export: BibTex EndNote

Article Metrics

Article views: 1801 Times PDF downloads: 1645 Times Cited by: 0 Times

History

Manuscript received: 03 December 2014 Manuscript revised: 11 April 2012 Online: Published: 01 October 2012

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误