J. Semicond. > Volume 33 > Issue 2 > Article Number: 022002

Photoelectric properties of Cu2ZnSnS4 thin films deposited by thermal evaporation

Wu Xinkun , Liu Wei , Cheng Shuying , Lai Yunfeng and Jia Hongjie

+ Author Affiliations + Find other works by these authors

PDF

Abstract: Sn/Cu/ZnS precursor were deposited by evaporation on soda lime glass at room temperature, and then polycrystalline thin films of Cu2ZnSnS4 (CZTS) were produced by sulfurizing the precursors in a sulfur atmosphere at a temperature of 550 ℃ for 3 h. Fabricated CZTS thin films were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, ultraviolet-visible-near infrared spectrophotometry, the Hall effect system, and 3D optical microscopy. The experimental results show that, when the ratios of [Cu]/([Zn] + [Sn]) and [Zn]/[Sn] in the CZTS are 0.83 and 1.15, the CZTS thin films possess an absorption coefficient of larger than 4.0 × 104 cm-1 in the energy range 1.5-3.5 eV, and a direct band gap of about 1.47 eV. The carrier concentration, resistivity and mobility of the CZTS film are 6.98 × 1016 cm-3, 6.96 Ω·cm, and 12.9 cm2/(V.s), respectively and the conduction type is p-type. Therefore, the CZTS thin films are suitable for absorption layers of solar cells.

Key words: Cu2ZnSnS4

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[1]

Zongyan Zhao, Xiang Zhao. Electronic, optical, and mechanical properties of Cu2ZnSnS4 with four crystal structures. J. Semicond., 2015, 36(8): 083004. doi: 10.1088/1674-4926/36/8/083004

[2]

Shao Lexi, Fu Yujun, Zhang Jun, He Deyan. Electrical and Optical Properties of Cu2 ZnSnS4 Thin Films Prepared for Solar Cell Absorber. J. Semicond., 2007, 28(S1): 337.

[3]

S. Ananthakumar, J. Ram Kumar, S. Moorthy Babu. Colloidal synthesis and characterization of Cu2ZnSnS4 nanoplates. J. Semicond., 2017, 38(3): 033007. doi: 10.1088/1674-4926/38/3/033007

[4]

S. Guitouni, M. Khammar, M. Messaoudi, N. Attaf, M.S. Aida. Electrical properties of Cu4ZnSnS2/ZnS heterojunction prepared by ultrasonic spray pyrolysis. J. Semicond., 2016, 37(12): 122001. doi: 10.1088/1674-4926/37/12/122001

[5]

Ding Sun, Yang Ge, Li Zhang, Shengzhi Xu, Ze Chen, Ning Wang, Xuejiao Liang, Changchun Wei, Ying Zhao, Xiaodan Zhang. Impact of Cu-rich growth on the Cu2ZnSnSe4 surface morphology and related solar cells behavior. J. Semicond., 2016, 37(1): 013004. doi: 10.1088/1674-4926/37/1/013004

[6]

Ding Sun, Shengzhi Xu, Li Zhang, Ze Chen, Yang Ge, Ning Wang, Xuejiao Liang, Changchun Wei, Ying Zhao, Xiaodan Zhang. Influence of selenium evaporation temperature on the structure of Cu2ZnSnSe4 thin film deposited by a co-evaporation process. J. Semicond., 2015, 36(4): 044009. doi: 10.1088/1674-4926/36/4/044009

[7]

Jinlong Lu, Jing Luo, Hongpeng Zhao, Jin Yang, Xianwei Jiang, Qi Liu, Xiaofeng Li, Yuehua Dai. Optimal migration route of Cu in HfO2. J. Semicond., 2014, 35(1): 013001. doi: 10.1088/1674-4926/35/1/013001

[8]

Yang Weifeng, Yang Keqin, Chen Xiaping, Zhang Feng, Wang Liangjun, Wu Zhengyun. Anealing Effect on Cu/ Ni/4H-SiC Schottky Barrier. J. Semicond., 2005, 26(S1): 277.

[9]

Tadatsugu Minami, Yuki Nishi, Toshihiro Miyata. Cu2O-based solar cells using oxide semiconductors. J. Semicond., 2016, 37(1): 014002. doi: 10.1088/1674-4926/37/1/014002

[10]

Kh. S. Karimov, M. Saleem, Z. M. Karieva, A. Mateen, M. Tariq Saeed Chani, Q. Zafar. Humidity sensing properties of Cu2O-PEPC nanocomposite films. J. Semicond., 2012, 33(7): 073001. doi: 10.1088/1674-4926/33/7/073001

[11]

Zhang Xin, Lu Qian, Wu Zijing, Wu Xiaojing, Shen Weidian, Jiang Bin. Nanoindentation study of a Cu/Ta/SiO2/Si multilayer system. J. Semicond., 2012, 33(4): 043002. doi: 10.1088/1674-4926/33/4/043002

[12]

Yixuan Fan, Le Huang, Dechao Geng, Wenping Hu. Controlled growth of Mo2C pyramids on liquid Cu surface. J. Semicond., 2020, 41(8): 082001. doi: 10.1088/1674-4926/41/8/082001

[13]

Yan Li, Yuling Liu, Aochen Wang, Zhixin Yang, Mingbin Sun, Chuan Cheng, Yufeng Zhang, Nannan Zhang. The application of Cu/SiO2 catalytic system in chemical mechanical planarization based on the stability of SiO2 sol. J. Semicond., 2014, 35(6): 066002. doi: 10.1088/1674-4926/35/6/066002

[14]

Deng Zanhong, Fang Xiaodong, Tao Ruhua, Dong Weiwei, Li Da, Zhu Xuebin. Effect of Cu-Excess on the Electrical Properties of CuxAlO2 (1≤x≤1.06). J. Semicond., 2008, 29(6): 1052.

[15]

D. Mohra, M. Benhaliliba, M. Serin, M.R. Khelladi, H. Lahmar, A. Azizi. The investigation of electrodeposited Cu2O/ITO layers by chronocoulometry process: effect of electrical potential. J. Semicond., 2016, 37(10): 103001. doi: 10.1088/1674-4926/37/10/103001

[16]

, , , , . Structural Characteristic of CdS Thin films and Their Influence on Cu(in,Ga)Se2(CIGS) Thin Film Solar Cell. J. Semicond., 2005, 26(2): 225.

[17]

Zohreh Shadrokh, Ahmad Yazdani, Hosein Eshghi. Preparation and characterization of sphere-like Cu2SnS3 nanoparticles and their dropcasted thin films. J. Semicond., 2017, 38(1): 013001. doi: 10.1088/1674-4926/38/1/013001

[18]

Liu Qi, Mao Guobing, Ao Jianping. Properties and Applications of ZnS Buffer Layers for Cu(In,Ga)Se2 Thin Film Solar Cells. J. Semicond., 2007, 28(5): 726.

[19]

M. R. Fadavieslam. Effect of substrate temperature on the physical properties of SnS2:Cu thin films deposited by spray pyrolysis. J. Semicond., 2018, 39(12): 123005. doi: 10.1088/1674-4926/39/12/123005

[20]

He Weiyu, Sun Yun, Qiao Zaixiang, Ao Jianping, Wang Xinglei, Li Changjian. J-V Characteristics of Cu(In1-xGax)Se2 Thin Film Solar Cells. J. Semicond., 2007, 28(12): 1941.

Search

Advanced Search >>

GET CITATION

Wu X K, Liu W, Cheng S Y, Lai Y F, Jia H J. Photoelectric properties of Cu2ZnSnS4 thin films deposited by thermal evaporation[J]. J. Semicond., 2012, 33(2): 022002. doi: 10.1088/1674-4926/33/2/022002.

Export: BibTex EndNote

Article Metrics

Article views: 2650 Times PDF downloads: 4262 Times Cited by: 0 Times

History

Manuscript received: 20 August 2015 Manuscript revised: 06 September 2011 Online: Published: 01 February 2012

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误