J. Semicond. > Volume 33 > Issue 9 > Article Number: 093004

Atomic layer deposition of an Al2O3 dielectric on ultrathin graphite by using electron beam irradiation

Jiang Ran , Meng Lingguo , Zhang Xijian , Hyung-Suk Jung and Cheol Seong Hwang

+ Author Affilications + Find other works by these authors

PDF

Abstract: Atomic layer deposition of an Al2O3 dielectric on ultrathin graphite is studied in order to investigate the integration of a high k dielectric with graphite-based substrates. Electron beam irradiation on the graphite surface is followed by a standard atomic layer deposition of Al2O3. Improvement of the Al2O3 layer deposition morphology was observed when using this radiation exposure on graphite. This result may be attributed to the amorphous change of the graphite layers during electron beam irradiation.

Key words: Al2O3high katomic layer depositiongraphene

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[1]

Decheng Yang, Fang Lang, Zhuo Xu, Jinchao Shi, Gaofei Li, Zhiyan Hu, Jingfeng Xiong. Influence of atomic layer deposition Al2O3 nano-layer on the surface passivation of silicon solar cells. J. Semicond., 2014, 35(5): 052002. doi: 10.1088/1674-4926/35/5/052002

[2]

Peng Kun, Wang Biao, Xiao Deyuan, Qiu Shengfen, Lin D C, Wu Ping, Yang S F. TDDB improvement by optimized processes on metal–insulator–silicon capacitors with atomic layer deposition of Al2O3 and multi layers of TiN film structure. J. Semicond., 2009, 30(8): 082005. doi: 10.1088/1674-4926/30/8/082005

[3]

Lara Valentic, Nima E. Gorji. Comment on Chen et al. "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition", Electrochimica Acta, 2014. J. Semicond., 2015, 36(9): 094012. doi: 10.1088/1674-4926/36/9/094012

[4]

Leifeng Chen, Hong He. Answer to comments on "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition". J. Semicond., 2017, 38(4): 044007. doi: 10.1088/1674-4926/38/4/044007

[5]

Wei Feng. Hydrodynamic simulations of terahertz oscillation in double-layer graphene. J. Semicond., 2018, 39(12): 122005. doi: 10.1088/1674-4926/39/12/122005

[6]

Abdulkerim Karabulut, Hasan Efeoglu, Abdulmecit Turut. Influence of Al2O3 barrier on the interfacial electronic structure of Au/Ti/n-GaAs structures. J. Semicond., 2017, 38(5): 054003. doi: 10.1088/1674-4926/38/5/054003

[7]

Zheli Wang, Jianjun Zhou, Yuechan Kong, Cen Kong, Xun Dong, Yang Yang, Tangsheng Chen. Thin-barrier enhancement-mode AlGaN/GaN MIS-HEMT using ALD Al2O3 as gate insulator. J. Semicond., 2015, 36(9): 094004. doi: 10.1088/1674-4926/36/9/094004

[8]

Jiahui Zhou, Hudong Chang, Honggang Liu, Guiming Liu, Wenjun Xu, Qi Li, Simin Li, Zhiyi He, Haiou Li. MIM capacitors with various Al2O3 thicknesses for GaAs RFIC application. J. Semicond., 2015, 36(5): 054004. doi: 10.1088/1674-4926/36/5/054004

[9]

Ge Liang, Hu Cheng, Zhu Zhiwei, Zhang Wei, Wu Dongping, Zhang Shili. Influence of surface preparation on atomic layer deposition of Pt films. J. Semicond., 2012, 33(8): 083003. doi: 10.1088/1674-4926/33/8/083003

[10]

Li Ye, Jiang Tingting, Sun Qingqing, Wang Pengfei, Ding Shijin, Zhang Wei. Optical properties of a HfO2/Si stack with a trace amount of nitrogen incorporation. J. Semicond., 2012, 33(3): 032001. doi: 10.1088/1674-4926/33/3/032001

[11]

Yanlong Yin, Jiang Li, Yang Xu, Hon Ki Tsang, Daoxin Dai. Silicon-graphene photonic devices. J. Semicond., 2018, 39(6): 061009. doi: 10.1088/1674-4926/39/6/061009

[12]

Santosh Kumar Gupta, Rupesh Shukla. Bandgap engineered novel g-C3N4/G/h-BN heterostructure for electronic applications. J. Semicond., 2019, 40(3): 032801. doi: 10.1088/1674-4926/40/3/032801

[13]

Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn. Graphene-based flexible and wearable electronics. J. Semicond., 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007

[14]

K. Fobelets, C. Panteli, O. Sydoruk, Chuanbo Li. Ammonia sensing using arrays of silicon nanowires and graphene. J. Semicond., 2018, 39(6): 063001. doi: 10.1088/1674-4926/39/6/063001

[15]

Li Wuqun, Cao Juncheng. Anisotropic polarization due to electron–phonon interactions in graphene. J. Semicond., 2009, 30(11): 112002. doi: 10.1088/1674-4926/30/11/112002

[16]

Yang Zhang, Wei Dou, Wei Luo, Weier Lu, Jing Xie, Chaobo Li, Yang Xia. Large area graphene produced via the assistance of surface modification. J. Semicond., 2013, 34(7): 073006. doi: 10.1088/1674-4926/34/7/073006

[17]

Xiaowei Jiang. Broadband absorption of graphene from magnetic dipole resonances in hybrid nanostructure. J. Semicond., 2019, 40(6): 062006. doi: 10.1088/1674-4926/40/6/062006

[18]

N. Nouri, G. Rashedi. Band structure of monolayer of graphene, silicene and silicon-carbide including a lattice of empty or filled holes. J. Semicond., 2018, 39(8): 083001. doi: 10.1088/1674-4926/39/8/083001

[19]

Pulkit Sharma, Pratap Singh, Kamlesh Patel. Attenuation characteristics of monolayer graphene by Pi-and T-networks modeling of multilayer microstrip line. J. Semicond., 2017, 38(9): 093003. doi: 10.1088/1674-4926/38/9/093003

[20]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

Search

Advanced Search >>

GET CITATION

Jiang R, Meng L G, Zhang X J, H S Jung, C S Hwang. Atomic layer deposition of an Al2O3 dielectric on ultrathin graphite by using electron beam irradiation[J]. J. Semicond., 2012, 33(9): 093004. doi: 10.1088/1674-4926/33/9/093004.

Export: BibTex EndNote

Article Metrics

Article views: 1834 Times PDF downloads: 1770 Times Cited by: 0 Times

History

Manuscript received: 20 August 2015 Manuscript revised: 28 May 2012 Online: Published: 01 September 2012

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误