J. Semicond. > Volume 34 > Issue 10 > Article Number: 105010

A wideband on-chip millimeter-wave patch antenna in 0.18 μm CMOS

Xiangyu Meng 1, , , Baoyong Chi 1, , Haikun Jia 1, , Lixue Kuang 1, , Wen Jia 2, and Zhihua Wang 1,

+ Author Affilications + Find other works by these authors

PDF

Abstract: A wideband on-chip millimeter-wave patch antenna in 0.18 μm CMOS with a low-resistivity (10 Ω· cm) silicon substrate is presented. The wideband is achieved by reducing the Q factor and exciting the high-order radiation modes with size optimization. The antenna uses an on-chip top layer metal as the patch and a probe station as the ground plane. The on-chip ground plane is connected to the probe station using the inner connection structure of the probe station for better performance. The simulated S11 is less than -10 dB over 46-95 GHz, which is well matched with the measured results over the available 40-67 GHz frequency range from our measurement equipment. A maximum gain of -5.55 dBi with 4% radiation efficiency at a 60 GHz point is also achieved based on Ansoft HFSS simulation. Compared with the current state-of-the-art devices, the presented antenna achieves a wider bandwidth and could be used in wideband millimeter-wave communication and image applications.

Key words: on-chip antennapatch antennawideband antennamillimeter-wave

Abstract: A wideband on-chip millimeter-wave patch antenna in 0.18 μm CMOS with a low-resistivity (10 Ω· cm) silicon substrate is presented. The wideband is achieved by reducing the Q factor and exciting the high-order radiation modes with size optimization. The antenna uses an on-chip top layer metal as the patch and a probe station as the ground plane. The on-chip ground plane is connected to the probe station using the inner connection structure of the probe station for better performance. The simulated S11 is less than -10 dB over 46-95 GHz, which is well matched with the measured results over the available 40-67 GHz frequency range from our measurement equipment. A maximum gain of -5.55 dBi with 4% radiation efficiency at a 60 GHz point is also achieved based on Ansoft HFSS simulation. Compared with the current state-of-the-art devices, the presented antenna achieves a wider bandwidth and could be used in wideband millimeter-wave communication and image applications.

Key words: on-chip antennapatch antennawideband antennamillimeter-wave



References:

[1]

Carver K R, Mink J W. Microstrip antenna technology[J]. IEEE Trans Antennas Propagation, 1981, 29(1): 2. doi: 10.1109/TAP.1981.1142523

[2]

Milligan T A. Modern antenna design. 2nd ed[J]. John Wiley & Sons, Inc, 2005.

[3]

Hsu S S, Wei K C, Hsu C Y. A 60-GHz millimeter-wave CPW-fed yagi antenna fabricated by using 0.18μm CMOS technology[J]. IEEE Electron Device Lett, 2008, 29(6): 625.

[4]

Guo P J, Chuang H R. A 60-GHz millimeter-wave CMOS RFIC-on-chip meander-line planar inverted-f antenna for WPAN applications[J]. Antennas and Propagation society International Symposium, 2008: 1.

[5]

Lin C C, Hsu S S, Hsu C Y. A 60-GHz millimeter-wave CMOS RFIC-on-chip triangular monopole antenna for WPAN applications[J]. IEEE Antennas Propag Soc Int Symp, 2007: 2522.

[6]

Huang K K, Wentzloff D D. 60 GHz on-chip patch antenna integrated in a 0.13-μm CMOS technology[J]. Ultra-Wideband (ICUWB), 2010: 1.

[7]

Han R, Zhang Y, Kim Y. 280 GHz and 860 GHz image sensors using Schottky-barrier diodes in 0.13μm digital CMOS[J]. Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012: 254.

[1]

Carver K R, Mink J W. Microstrip antenna technology[J]. IEEE Trans Antennas Propagation, 1981, 29(1): 2. doi: 10.1109/TAP.1981.1142523

[2]

Milligan T A. Modern antenna design. 2nd ed[J]. John Wiley & Sons, Inc, 2005.

[3]

Hsu S S, Wei K C, Hsu C Y. A 60-GHz millimeter-wave CPW-fed yagi antenna fabricated by using 0.18μm CMOS technology[J]. IEEE Electron Device Lett, 2008, 29(6): 625.

[4]

Guo P J, Chuang H R. A 60-GHz millimeter-wave CMOS RFIC-on-chip meander-line planar inverted-f antenna for WPAN applications[J]. Antennas and Propagation society International Symposium, 2008: 1.

[5]

Lin C C, Hsu S S, Hsu C Y. A 60-GHz millimeter-wave CMOS RFIC-on-chip triangular monopole antenna for WPAN applications[J]. IEEE Antennas Propag Soc Int Symp, 2007: 2522.

[6]

Huang K K, Wentzloff D D. 60 GHz on-chip patch antenna integrated in a 0.13-μm CMOS technology[J]. Ultra-Wideband (ICUWB), 2010: 1.

[7]

Han R, Zhang Y, Kim Y. 280 GHz and 860 GHz image sensors using Schottky-barrier diodes in 0.13μm digital CMOS[J]. Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012: 254.

[1]

Yanfei Mao, Shiju E, Klaus Schmalz, J. Christoph Scheytt. 245 GHz subharmonic receiver with on-chip antenna for gas spectroscopy application. J. Semicond., 2018, 39(12): 125001. doi: 10.1088/1674-4926/39/12/125001

[2]

Qi Peng, Chun Zhang, Xijin Zhao, Zhihua Wang. A UHF RFID system with on-chip-antenna tag for short range communication. J. Semicond., 2015, 36(5): 055008. doi: 10.1088/1674-4926/36/5/055008

[3]

Ling Jin, Nathalie Rolland. Millimeter wave band ultra wideband transmitter MMIC. J. Semicond., 2015, 36(9): 095005. doi: 10.1088/1674-4926/36/9/095005

[4]

Aritra Acharyya, Aliva Mallik, Debopriya Banerjee, Suman Ganguli, Arindam Das, Sudeepto Dasgupta, J.P. Banerjee. Large-signal characterizations of DDR IMPATT devices based on group Ⅲ-Ⅴ semiconductors at millimeter-wave and terahertz frequencies. J. Semicond., 2014, 35(8): 084003. doi: 10.1088/1674-4926/35/8/084003

[5]

Chen Xinyu, Jiang Youquan, Xu Zhengrong, Huang Ziqian, Li Fuxiao. A Millimeter-Wave GaAs pin Diode SPST Switch MMIC. J. Semicond., 2006, 27(12): 2163.

[6]

Jie Huang, Qian Zhao, Hao Yang, Junrong Dong, Haiying Zhang. Planar Schottky varactor diode and corresponding large signal model for millimeter-wave applications. J. Semicond., 2014, 35(5): 054006. doi: 10.1088/1674-4926/35/5/054006

[7]

Aritra Acharyya, Jit Chakraborty, Kausik Das, Subir Datta, Pritam De, Suranjana Banerjee, J.P. Banerjee. Large-signal characterization of DDR silicon IMPATTs operating in millimeter-wave and terahertz regime. J. Semicond., 2013, 34(10): 104003. doi: 10.1088/1674-4926/34/10/104003

[8]

Aritra Acharyya, Suranjana Banerjee, J. P. Banerjee. Potentiality of semiconducting diamond as the base material of millimeter-wave and terahertz IMPATT devices. J. Semicond., 2014, 35(3): 034005. doi: 10.1088/1674-4926/35/3/034005

[9]

Yang Tang, Zuochang Ye, Yan Wang. High efficiency modeling of broadband millimeter-wave CMOS FETs with gate width scalability by using pre-modeled cells. J. Semicond., 2014, 35(3): 034012. doi: 10.1088/1674-4926/35/3/034012

[10]

Xia Jun, Wang Zhigong, Wu Xiushan, Li Wei. Analysis and Modeling of Broadband CMOS Monolithic Balun up to Millimeter-Wave Frequencies. J. Semicond., 2008, 29(3): 467.

[11]

Xu Leijun, Wang Zhigong, Li Qin. Design of a monolithic millimeter-wave doubly-balanced mixer in GaAs. J. Semicond., 2009, 30(8): 085003. doi: 10.1088/1674-4926/30/8/085003

[12]

Xi Jingtian, Yan Na, Che Wenyi, Xu Conghui, Wang Xiao, Yang Yuqing, Jian Hongyan, Min Hao. Low-cost low-power UHF RFID tag with on-chip antenna. J. Semicond., 2009, 30(7): 075012. doi: 10.1088/1674-4926/30/7/075012

[13]

Tianxi Wang, Mei Han, Gaowei Xu, Le Luo. Fabrication of a microstrip patch antenna integrated in low-resistance silicon wafer using a BCB dielectric. J. Semicond., 2013, 34(10): 104008. doi: 10.1088/1674-4926/34/10/104008

[14]

Zhenxing Yu, Jun Feng. An ultra-broadband distributed passive gate-pumped mixer in 0.18 μm CMOS. J. Semicond., 2013, 34(8): 085005. doi: 10.1088/1674-4926/34/8/085005

[15]

Lixue Kuang, Baoyong Chi, Lei Chen, Wen Jia, Zhihua Wang. A fully-differential phase-locked loop frequency synthesizer for 60-GHz wireless communication. J. Semicond., 2014, 35(12): 125002. doi: 10.1088/1674-4926/35/12/125002

[16]

Guoping Tang, Hongfei Yao, Xiaohua Ma, Zhi Jin, Xinyu Liu. On-wafer de-embedding techniques from 0.1 to 110 GHz. J. Semicond., 2015, 36(5): 054012. doi: 10.1088/1674-4926/36/5/054012

[17]

Shimin Feng, Suihua Zhou, Zhiyi Chen, Hongxin Zhang. An SLF magnetic antenna calibration system. J. Semicond., 2014, 35(5): 055011. doi: 10.1088/1674-4926/35/5/055011

[18]

Jun Luo, Yan Wang, Ruifeng Yue. 60-GHz array antenna with standard CMOS technology on Schott Borofloat. J. Semicond., 2013, 34(11): 115006. doi: 10.1088/1674-4926/34/11/115006

[19]

Guo Baoshan, Song Guofeng, Chen Lianghui. Numerical Study of Surface Plasmons Nano-Optical Antenna and Its Array. J. Semicond., 2008, 29(12): 2340.

[20]

Shimin Feng, Suihua Zhou, Zhiyi Chen. A very low noise preamplifier for extremely low frequency magnetic antenna. J. Semicond., 2013, 34(7): 075003. doi: 10.1088/1674-4926/34/7/075003

Search

Advanced Search >>

GET CITATION

X Y Meng, B Y Chi, H K Jia, L X Kuang, W Jia, Z H Wang. A wideband on-chip millimeter-wave patch antenna in 0.18 μm CMOS[J]. J. Semicond., 2013, 34(10): 105010. doi: 10.1088/1674-4926/34/10/105010.

Export: BibTex EndNote

Article Metrics

Article views: 617 Times PDF downloads: 9 Times Cited by: 0 Times

History

Manuscript received: 21 March 2013 Manuscript revised: 19 April 2013 Online: Published: 01 October 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误