J. Semicond. > Volume 34 > Issue 11 > Article Number: 115002

A low power high gain gain-controlled LNA + mixer for GNSS receivers

Binbin Wei 1, and Jinguang Jiang 1, 2, 3, ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: A low power high gain gain-controlled LNA + mixer for GNSS receivers is reported. The high gain LNA is realized with a current source load. Its gain-controlled ability is achieved using a programmable bias circuit. Taking advantage of the high gain LNA, a high noise figure passive mixer is adopted. With the passive mixer, low power consumption and high voltage gain of the LNA + mixer are achieved. To fully investigate the performance of this circuit, comparisons between a conventional LNA + mixer, a previous low power LNA + mixer, and the proposed LNA + mixer are presented. The circuit is implemented in 0.18 μm mixed-signal CMOS technology. A 3.8 dB noise figure, an overall 45 dB converge gain and a 10 dB controlled gain range of the two stages are measured. The chip occupies 0.24 mm2 and consumes 2 mA current under 1.8 V supply.

Key words: CMOSGNSS receiverlow powerLNAmixerhigh gain

Abstract: A low power high gain gain-controlled LNA + mixer for GNSS receivers is reported. The high gain LNA is realized with a current source load. Its gain-controlled ability is achieved using a programmable bias circuit. Taking advantage of the high gain LNA, a high noise figure passive mixer is adopted. With the passive mixer, low power consumption and high voltage gain of the LNA + mixer are achieved. To fully investigate the performance of this circuit, comparisons between a conventional LNA + mixer, a previous low power LNA + mixer, and the proposed LNA + mixer are presented. The circuit is implemented in 0.18 μm mixed-signal CMOS technology. A 3.8 dB noise figure, an overall 45 dB converge gain and a 10 dB controlled gain range of the two stages are measured. The chip occupies 0.24 mm2 and consumes 2 mA current under 1.8 V supply.

Key words: CMOSGNSS receiverlow powerLNAmixerhigh gain



References:

[1]

Meng T H. Low power GPS receiver design[J]. IEEE Workshop on Signal Processing Systems, 1998.

[2]

Lee T H. The design of CMOS radio-frequency integrated circuits[J]. Cambridge, UK:Cambridge University Press, 2004.

[3]

Sjöland H, Karimi-Sanjaani A, Abidi A A. A merged CMOS LNA and mixer for a WCDMA receiver[J]. IEEE J Solid-State Circuits, 2003, 38(6): 1045. doi: 10.1109/JSSC.2003.811952

[4]

Shen C, Li Z. A low power 0.3-3.8 GHz low-noise mixer with noise cancellation[J]. IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications (IMWS), 2012.

[5]

Sun J, Huang L, Liu H. A 0.18μm mixer merged with LNA exploiting noise cancellation[J]. IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2011.

[6]

Shaeffer D K, Lee T H. A 1.5-V, 1.5-GHz CMOS low noise amplifier[J]. IEEE J Solid-State Circuits, 1997, 32(5): 748.

[7]

Leroux P, Janssens J, Steyaert M. A 0.8-dB NF ESD-protected 9-mW CMOS LNA operating at 1.23 GHz[J]. IEEE J Solid-State Circuits, 2002, 37(6): 760. doi: 10.1109/JSSC.2002.1004580

[8]

Terrovitis M T, Meyer R G. Noise in current-commutating CMOS mixers[J]. IEEE J Solid-State Circuits, 1999, 34(6): 772. doi: 10.1109/4.766811

[9]

Darabi H, Abidi A A. Noise in RF-CMOS mixers:a simple physical model[J]. IEEE J Solid-State Circuits, 2000, 35(1): 15. doi: 10.1109/4.818916

[10]

NacEachern L A, Manku T. A charge-injection method for Gilbert cell biasing[J]. IEEE Canadian Conference on Electrical and Computer Engineering, 1998, 1: 365.

[11]

Kim M, Lee J, Yun T. Low-noise and high-gain mixer combining switched-biasing and current-bleeding techniques[J]. Electron Lett, 2012, 48(23): 1476. doi: 10.1049/el.2012.2642

[12]

Darabi H, Chiu J. A noise cancellation technique in active RF-CMOS mixers[J]. IEEE J Solid-State Circuits, 2005, 40(12): 2628. doi: 10.1109/JSSC.2005.857428

[13]

Kim N, Aparin V, Larson L E. A resistively degenerated wide-band CMOS passive mixer with low noise figure and high ⅡP2[J]. IEEE Trans Microw Theory Tech, 2010, 58(4): 820. doi: 10.1109/TMTT.2010.2042644

[14]

Bao Kuan, Fan Xiangning, Li Wei. A wideband current-commutating passive mixer for multi-standard receivers in a 0.18μm CMOS[J]. Journal of Semiconductors, 2012, 34(1): 015003.

[15]

Liu Rongjiang, Guo Guiliang, Yan Yuepeng. High linearity current communicating passive mixer employing a simple resistor bias[J]. Journal of Semiconductors, 2013, 34(3): 035005. doi: 10.1088/1674-4926/34/3/035005

[16]

Macario R C V, Mejallie I D. The phasing method for sideband selection in broadcast receivers[J]. EBU Rev, 1980, 181: 119.

[17]

Meng C C, Sung D W, Huang G W. A 5.2-GHz GaInP/GaAs HBT double-quadrature downconverter with polyphase filter for 40-dB image reflection[J]. IEEE Microw Compon Lett, 2005, 30(2): 59.

[18]

Lai Dengjun, Chen Yingmei, Wang Xiaodong. A CMOS single-differential LNA and current bleeding CMOS mixer for GPS receivers[J]. 12th IEEE International Conference on Communication Technology (ICCT), 2010.

[19]

Le V H, Han S K, Lee J S. Current-reused ultra low power, low noise LNA mixer[J]. IEEE Microw Wireless Compon Lett, 2009, 19(11): 755. doi: 10.1109/LMWC.2009.2032028

[20]

Abdelghany M A, Pokharel R K, Kanaya H. Low-voltage low-power combined LNA-single gate mixer for 5 GHz wireless systems[J]. IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2011: 1.

[21]

Sun Jingye, Huang Lu, Yuan Haiquan. A 0.18μm CMOS Gilbert low noise mixer with noise cancellation[J]. Journal of Semiconductors, 2012, 33(2): 025004. doi: 10.1088/1674-4926/33/2/025004

[1]

Meng T H. Low power GPS receiver design[J]. IEEE Workshop on Signal Processing Systems, 1998.

[2]

Lee T H. The design of CMOS radio-frequency integrated circuits[J]. Cambridge, UK:Cambridge University Press, 2004.

[3]

Sjöland H, Karimi-Sanjaani A, Abidi A A. A merged CMOS LNA and mixer for a WCDMA receiver[J]. IEEE J Solid-State Circuits, 2003, 38(6): 1045. doi: 10.1109/JSSC.2003.811952

[4]

Shen C, Li Z. A low power 0.3-3.8 GHz low-noise mixer with noise cancellation[J]. IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications (IMWS), 2012.

[5]

Sun J, Huang L, Liu H. A 0.18μm mixer merged with LNA exploiting noise cancellation[J]. IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2011.

[6]

Shaeffer D K, Lee T H. A 1.5-V, 1.5-GHz CMOS low noise amplifier[J]. IEEE J Solid-State Circuits, 1997, 32(5): 748.

[7]

Leroux P, Janssens J, Steyaert M. A 0.8-dB NF ESD-protected 9-mW CMOS LNA operating at 1.23 GHz[J]. IEEE J Solid-State Circuits, 2002, 37(6): 760. doi: 10.1109/JSSC.2002.1004580

[8]

Terrovitis M T, Meyer R G. Noise in current-commutating CMOS mixers[J]. IEEE J Solid-State Circuits, 1999, 34(6): 772. doi: 10.1109/4.766811

[9]

Darabi H, Abidi A A. Noise in RF-CMOS mixers:a simple physical model[J]. IEEE J Solid-State Circuits, 2000, 35(1): 15. doi: 10.1109/4.818916

[10]

NacEachern L A, Manku T. A charge-injection method for Gilbert cell biasing[J]. IEEE Canadian Conference on Electrical and Computer Engineering, 1998, 1: 365.

[11]

Kim M, Lee J, Yun T. Low-noise and high-gain mixer combining switched-biasing and current-bleeding techniques[J]. Electron Lett, 2012, 48(23): 1476. doi: 10.1049/el.2012.2642

[12]

Darabi H, Chiu J. A noise cancellation technique in active RF-CMOS mixers[J]. IEEE J Solid-State Circuits, 2005, 40(12): 2628. doi: 10.1109/JSSC.2005.857428

[13]

Kim N, Aparin V, Larson L E. A resistively degenerated wide-band CMOS passive mixer with low noise figure and high ⅡP2[J]. IEEE Trans Microw Theory Tech, 2010, 58(4): 820. doi: 10.1109/TMTT.2010.2042644

[14]

Bao Kuan, Fan Xiangning, Li Wei. A wideband current-commutating passive mixer for multi-standard receivers in a 0.18μm CMOS[J]. Journal of Semiconductors, 2012, 34(1): 015003.

[15]

Liu Rongjiang, Guo Guiliang, Yan Yuepeng. High linearity current communicating passive mixer employing a simple resistor bias[J]. Journal of Semiconductors, 2013, 34(3): 035005. doi: 10.1088/1674-4926/34/3/035005

[16]

Macario R C V, Mejallie I D. The phasing method for sideband selection in broadcast receivers[J]. EBU Rev, 1980, 181: 119.

[17]

Meng C C, Sung D W, Huang G W. A 5.2-GHz GaInP/GaAs HBT double-quadrature downconverter with polyphase filter for 40-dB image reflection[J]. IEEE Microw Compon Lett, 2005, 30(2): 59.

[18]

Lai Dengjun, Chen Yingmei, Wang Xiaodong. A CMOS single-differential LNA and current bleeding CMOS mixer for GPS receivers[J]. 12th IEEE International Conference on Communication Technology (ICCT), 2010.

[19]

Le V H, Han S K, Lee J S. Current-reused ultra low power, low noise LNA mixer[J]. IEEE Microw Wireless Compon Lett, 2009, 19(11): 755. doi: 10.1109/LMWC.2009.2032028

[20]

Abdelghany M A, Pokharel R K, Kanaya H. Low-voltage low-power combined LNA-single gate mixer for 5 GHz wireless systems[J]. IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2011: 1.

[21]

Sun Jingye, Huang Lu, Yuan Haiquan. A 0.18μm CMOS Gilbert low noise mixer with noise cancellation[J]. Journal of Semiconductors, 2012, 33(2): 025004. doi: 10.1088/1674-4926/33/2/025004

[1]

Li Bing, Zhuang Yiqi, Long Qiang, Jin Zhao, Li Zhenrong, Jin Gang. Design of a 0.18μm CMOS multi-band compatible low power GNSS receiver RF frontend. J. Semicond., 2011, 32(3): 035007. doi: 10.1088/1674-4926/32/3/035007

[2]

Heping Ma, Hua Xu, Bei Chen, Yin Shi. An ISM 2.4 GHz low power low-IF RF receiver front-end. J. Semicond., 2015, 36(8): 085002. doi: 10.1088/1674-4926/36/8/085002

[3]

Sun Jingye, Huang Lu, Yuan Haiquan, Lin Fujiang. A 0.18 μm CMOS Gilbert low noise mixer with noise cancellation. J. Semicond., 2012, 33(2): 025004. doi: 10.1088/1674-4926/33/2/025004

[4]

Li Bing, Zhuang Yiqi, Han Yeqi, Xing Xiaoling, Li Zhenrong, Long Qiang. A 0.18 μm CMOS single-inductor single-stage quadrature frontend for GNSS receiver. J. Semicond., 2011, 32(9): 095005. doi: 10.1088/1674-4926/32/9/095005

[5]

Chenjian Wu, Zhiqun Li, Ge Sun. A low voltage low power up-conversion mixer for WSN application. J. Semicond., 2014, 35(4): 045006. doi: 10.1088/1674-4926/35/4/045006

[6]

Najam Muhammad Amin, Zhigong Wang, Zhiqun Li, Qin Li, Yang Liu. A low power, low noise figure quadrature demodulator for a 60 GHz receiver in 65-nm CMOS technology. J. Semicond., 2015, 36(4): 045005. doi: 10.1088/1674-4926/36/4/045005

[7]

Li Wenyuan, Wang Zhigong, . Low-Power CMOS IC for Function Electrical Stimulation of Nerves. J. Semicond., 2007, 28(3): 393.

[8]

Yanbin Luo, Jian Shi, Chengyan Ma, Yebing Gan, Min Qian. A high linearity SiGe HBT LNA for GPS receiver. J. Semicond., 2014, 35(4): 045001. doi: 10.1088/1674-4926/35/4/045001

[9]

Li Xuechu, Gao Qingyun, Qin Shicai. A Low-Power High-Frequency CMOS Peak Detector. J. Semicond., 2006, 27(10): 1707.

[10]

Yin Xizhen, Ma Chengyan, Ye Tianchun, Xiao Shimao, Jin Yuhua. A low-phase-noise LC-VCO with an enhanced-Q varactor for use in a high-sensitivity GNSS receiver. J. Semicond., 2012, 33(5): 055002. doi: 10.1088/1674-4926/33/5/055002

[11]

Yanbin Luo, Chengyan Ma, Yebing Gan, Min Qian, Tianchun Ye. An inductorless multi-mode RF front end for GNSS receiver in 55 nm CMOS. J. Semicond., 2015, 36(10): 105009. doi: 10.1088/1674-4926/36/10/105009

[12]

Jihong Zhang, Xuefei Bai, Lu Huang. A wideband CMOS inductorless low noise amplifier employing noise cancellation for digital TV tuner applications. J. Semicond., 2013, 34(9): 095011. doi: 10.1088/1674-4926/34/9/095011

[13]

Xu Jian, Wang Zhigong, Niu Xiaokang. Design of high speed LVDS transceiver ICs. J. Semicond., 2010, 31(7): 075014. doi: 10.1088/1674-4926/31/7/075014

[14]

Huang Yumei, Wang Jingguang, Wang Jinju, Hong Zhiliang. A Low Noise,High Linearity CMOS Receiver for 802.11b WLAN Applications. J. Semicond., 2008, 29(9): 1708.

[15]

Jingjing Chen, Weiyang Liu, Xiaodong Liu, Zhao Zhang, Liyuan Liu, Haiyong Wang, Nanjian Wu. A 2.4 GHz ultra-low power low-IF receiver and MUX-based transmitter for WPAN applications. J. Semicond., 2014, 35(6): 065001. doi: 10.1088/1674-4926/35/6/065001

[16]

Yiqiang Wu, Zhigong Wang, Jian Xu, Jian Wang, Ouli Zhang, Lu Tang. Design of a novel mixer with high gain and linearity improvement for DRM/DAB applications. J. Semicond., 2013, 34(1): 015005. doi: 10.1088/1674-4926/34/1/015005

[17]

Wang Chuang, Qian Rong, Sun Xiaowei. K-Band Monolithic Low Noise Amplifier with High Gain. J. Semicond., 2006, 27(7): 1285.

[18]

Xusheng Tang, Fengyi Huang, Youming Zhang, Xin Tang. Reconfigurable dual-band low noise amplifier design and realization. J. Semicond., 2014, 35(5): 055004. doi: 10.1088/1674-4926/35/5/055004

[19]

Yao Jinke, Chi Baoyong, Wang Zhihua. A Novel Low Power ASK Receiver with AGC Loop. J. Semicond., 2007, 28(3): 337.

[20]

Feng Lisong, Huang Lu, Bai Xuefei, Xi Tianzuo. A 0.18 μm CMOS 3–5 GHz broadband flat gain low noise amplifier. J. Semicond., 2010, 31(2): 025003. doi: 10.1088/1674-4926/31/2/025003

Search

Advanced Search >>

GET CITATION

B B Wei, J G Jiang. A low power high gain gain-controlled LNA + mixer for GNSS receivers[J]. J. Semicond., 2013, 34(11): 115002. doi: 10.1088/1674-4926/34/11/115002.

Export: BibTex EndNote

Article Metrics

Article views: 1171 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 05 April 2013 Manuscript revised: 20 May 2013 Online: Published: 01 November 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误