J. Semicond. > Volume 34 > Issue 12 > Article Number: 124004

Enhanced performance of InGaN/GaN multiple quantum well solar cells with patterned sapphire substrate

Liang Jing 1, 2, , Hongling Xiao 1, 2, , , Xiaoliang Wang 1, 2, 3, 4, , Cuimei Wang 1, 2, , Qingwen Deng 1, 2, , Zhidong Li 1, 2, , Jieqin Ding 1, 2, , Zhanguo Wang 1, 2, and Xun Hou 4,

+ Author Affilications + Find other works by these authors

PDF

Abstract: In this paper, the enhanced performance of InGaN/GaN multiple quantum well solar cells grown on patterned sapphire substrates (PSS) was demonstrated. The short-circuit current (Jsc) density of the solar cell grown on PSS showed an improvement of 60%, compared to that of solar cells grown on conventional sapphire substrate. The improved performance is primarily due to the reduction of edge dislocations and the increased light absorption path by the scattering from the textured surface of the PSS. It shows that the patterned sapphire technology can effectively alleviate the problem of high-density dislocations and low Jsc caused by thinner absorption layers of the InGaN based solar cell, and it is promising to improve the efficiency of the solar cell.

Key words: InGaNpatterned sapphire substratesolar cell

Abstract: In this paper, the enhanced performance of InGaN/GaN multiple quantum well solar cells grown on patterned sapphire substrates (PSS) was demonstrated. The short-circuit current (Jsc) density of the solar cell grown on PSS showed an improvement of 60%, compared to that of solar cells grown on conventional sapphire substrate. The improved performance is primarily due to the reduction of edge dislocations and the increased light absorption path by the scattering from the textured surface of the PSS. It shows that the patterned sapphire technology can effectively alleviate the problem of high-density dislocations and low Jsc caused by thinner absorption layers of the InGaN based solar cell, and it is promising to improve the efficiency of the solar cell.

Key words: InGaNpatterned sapphire substratesolar cell



References:

[1]

Wu J, Walukiewicz W, Yu K M. Unusual properties of the fundamental band gap of InN[J]. Appl Phys Lett, 2002, 80(21): 3967. doi: 10.1063/1.1482786

[2]

Xiao H, Wang X, Wang J. Growth and characterization of InN on sapphire substrate by RF-MBE[J]. J Cryst Growth, 2005, 276(3/4): 401.

[3]

Muth J F, Lee J H, Shmagin I K. Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements[J]. Appl Phys Lett, 1997, 71(18): 2572. doi: 10.1063/1.120191

[4]

Wu J, Walukiewicz W, Yu K M. Superior radiation resistance of In1-xGaxN alloys:full-solar-spectrum photovoltaic material system[J]. J Appl Phys, 2003, 94(10): 6477. doi: 10.1063/1.1618353

[5]

Jani O, Ferguson I, Honsberg C. Design and characterization of GaN/InGaN solar cells[J]. Appl Phys Lett, 2007, 91(13): 132117. doi: 10.1063/1.2793180

[6]

Zhang Xiaobin, Wang Xiaoliang, Xiao Hongling. InGaN/GaN multiple quantum well solar cells with an enhanced open-circuit voltage[J]. Chin Phys B, 2011, 20(2): 028402. doi: 10.1088/1674-1056/20/2/028402

[7]

Jampana B R, Melton A G, Jamil M. Design and realization of wide-band-gap ( 2.67 eV) InGaN p-n junction solar cell[J]. IEEE Electron Device Lett, 2010, 31(1): 32. doi: 10.1109/LED.2009.2034280

[8]

Dahal R, Li J, Aryal K. InGaN/GaN multiple quantum well concentrator solar cells[J]. Appl Phys Lett, 2010, 97(7): 073115. doi: 10.1063/1.3481424

[9]

Elsner J, Jones R, Sitch P K. Theory of threading edge and screw dislocations in GaN[J]. Phys Rev Lett, 1997, 79(19): 3672. doi: 10.1103/PhysRevLett.79.3672

[10]

Sakai S. Homoepitaxial and heteroepitaxial growth of InGaN/GaN[J]. Electrons and Communications in Japan (Part Ⅱ Electronics), 2000, 83(2): 17. doi: 10.1002/(ISSN)1520-6432

[11]

Holec D, Costa P M F J, Kappers M J. Critical thickness calculations for InGaN/GaN[J]. J Cryst Growth, 2007, 303(1): 314. doi: 10.1016/j.jcrysgro.2006.12.054

[12]

Sheu J K, Yang C C, Tu S J. Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers[J]. IEEE Electron Device Lett, 2009, 30(3): 225. doi: 10.1109/LED.2008.2012275

[13]

Sakai A, Sunakawa H, Usui A. Defect structure in selectively grown GaN films with low threading dislocation density[J]. Appl Phys Lett, 1997, 71(16): 2259. doi: 10.1063/1.120044

[14]

Kapolnek D, Keller S, Vetury R. Anisotropic epitaxial lateral growth in GaN selective area epitaxy[J]. Appl Phys Lett, 1997, 71: 1204. doi: 10.1063/1.119626

[15]

Lee K S, Kwack H S, Hwang J S. Spatial correlation between optical properties and defect formation in GaN thin films laterally overgrown on cone-shaped patterned sapphire substrates[J]. J Appl Phys, 2010, 107(10): 103506. doi: 10.1063/1.3388014

[16]

Yang C C, Sheu J K, Kuo C H. Improved power conversion efficiency of InGaN Photovoltaic devices grown on patterned sapphire substrates[J]. IEEE Electron Device Lett, 2011, 32(4): 536. doi: 10.1109/LED.2011.2107725

[17]

Lee Y J, Lee M H, Cheng C M. Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate[J]. Appl Phys Lett, 2011, 98(26): 263504. doi: 10.1063/1.3605244

[18]

Srikant V, Speck J S, Clarke D R. Mosaic structure in epitaxial thin films having large lattice mismatch[J]. J Appl Phys, 1997, 82(9): 4286. doi: 10.1063/1.366235

[19]

Chu M T, Liao W Y, Horng R H. Growth and characterization of p-InGaN/i-InGaN/n-GaN double-heterojunction solar cells on patterned sapphire substrates[J]. IEEE Electron Device Lett, 2011, 32(7): 922. doi: 10.1109/LED.2011.2144954

[1]

Wu J, Walukiewicz W, Yu K M. Unusual properties of the fundamental band gap of InN[J]. Appl Phys Lett, 2002, 80(21): 3967. doi: 10.1063/1.1482786

[2]

Xiao H, Wang X, Wang J. Growth and characterization of InN on sapphire substrate by RF-MBE[J]. J Cryst Growth, 2005, 276(3/4): 401.

[3]

Muth J F, Lee J H, Shmagin I K. Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements[J]. Appl Phys Lett, 1997, 71(18): 2572. doi: 10.1063/1.120191

[4]

Wu J, Walukiewicz W, Yu K M. Superior radiation resistance of In1-xGaxN alloys:full-solar-spectrum photovoltaic material system[J]. J Appl Phys, 2003, 94(10): 6477. doi: 10.1063/1.1618353

[5]

Jani O, Ferguson I, Honsberg C. Design and characterization of GaN/InGaN solar cells[J]. Appl Phys Lett, 2007, 91(13): 132117. doi: 10.1063/1.2793180

[6]

Zhang Xiaobin, Wang Xiaoliang, Xiao Hongling. InGaN/GaN multiple quantum well solar cells with an enhanced open-circuit voltage[J]. Chin Phys B, 2011, 20(2): 028402. doi: 10.1088/1674-1056/20/2/028402

[7]

Jampana B R, Melton A G, Jamil M. Design and realization of wide-band-gap ( 2.67 eV) InGaN p-n junction solar cell[J]. IEEE Electron Device Lett, 2010, 31(1): 32. doi: 10.1109/LED.2009.2034280

[8]

Dahal R, Li J, Aryal K. InGaN/GaN multiple quantum well concentrator solar cells[J]. Appl Phys Lett, 2010, 97(7): 073115. doi: 10.1063/1.3481424

[9]

Elsner J, Jones R, Sitch P K. Theory of threading edge and screw dislocations in GaN[J]. Phys Rev Lett, 1997, 79(19): 3672. doi: 10.1103/PhysRevLett.79.3672

[10]

Sakai S. Homoepitaxial and heteroepitaxial growth of InGaN/GaN[J]. Electrons and Communications in Japan (Part Ⅱ Electronics), 2000, 83(2): 17. doi: 10.1002/(ISSN)1520-6432

[11]

Holec D, Costa P M F J, Kappers M J. Critical thickness calculations for InGaN/GaN[J]. J Cryst Growth, 2007, 303(1): 314. doi: 10.1016/j.jcrysgro.2006.12.054

[12]

Sheu J K, Yang C C, Tu S J. Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers[J]. IEEE Electron Device Lett, 2009, 30(3): 225. doi: 10.1109/LED.2008.2012275

[13]

Sakai A, Sunakawa H, Usui A. Defect structure in selectively grown GaN films with low threading dislocation density[J]. Appl Phys Lett, 1997, 71(16): 2259. doi: 10.1063/1.120044

[14]

Kapolnek D, Keller S, Vetury R. Anisotropic epitaxial lateral growth in GaN selective area epitaxy[J]. Appl Phys Lett, 1997, 71: 1204. doi: 10.1063/1.119626

[15]

Lee K S, Kwack H S, Hwang J S. Spatial correlation between optical properties and defect formation in GaN thin films laterally overgrown on cone-shaped patterned sapphire substrates[J]. J Appl Phys, 2010, 107(10): 103506. doi: 10.1063/1.3388014

[16]

Yang C C, Sheu J K, Kuo C H. Improved power conversion efficiency of InGaN Photovoltaic devices grown on patterned sapphire substrates[J]. IEEE Electron Device Lett, 2011, 32(4): 536. doi: 10.1109/LED.2011.2107725

[17]

Lee Y J, Lee M H, Cheng C M. Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate[J]. Appl Phys Lett, 2011, 98(26): 263504. doi: 10.1063/1.3605244

[18]

Srikant V, Speck J S, Clarke D R. Mosaic structure in epitaxial thin films having large lattice mismatch[J]. J Appl Phys, 1997, 82(9): 4286. doi: 10.1063/1.366235

[19]

Chu M T, Liao W Y, Horng R H. Growth and characterization of p-InGaN/i-InGaN/n-GaN double-heterojunction solar cells on patterned sapphire substrates[J]. IEEE Electron Device Lett, 2011, 32(7): 922. doi: 10.1109/LED.2011.2144954

[1]

Wen Bo, Zhou Jianjun, Jiang Ruolian, Xie Zili, Chen Dunjun, Ji Xiaoli, Han Ping, Zhang Rong, Zheng Youdou. Theoretical Calculation of Conversion Efficiency of InGaN Solar Cells. J. Semicond., 2007, 28(9): 1392.

[2]

Wang Lili, Wang Hui, Sun Xian, Wang Hai, Zhu Jianjun, Yang Hui, Liang Junwu. Influence of Temperature on MOCVD Growth of InGaN. J. Semicond., 2007, 28(S1): 257.

[3]

Wen Bo, Jiang Ruolian, Liu Chengxiang, Xie Zili, Zhou Jianjun, Han Ping, Zhang Rong, Zheng Youdou. Influence of Thermal Annealing on Properties of InGaN Films. J. Semicond., 2006, 27(S1): 92.

[4]

Zongcun Liang, Dianlei Wang, Yanbin Zhu. Effects of substrate characteristics on the passivation performance of ALD-Al2O3 thin film for high-efficiency solar cells. J. Semicond., 2014, 35(5): 054002. doi: 10.1088/1674-4926/35/5/054002

[5]

Liang Jing, Hongling Xiao, Xiaoliang Wang, Cuimei Wang, Qingwen Deng, Zhidong Li, Jieqin Ding, Zhanguo Wang, Xun Hou. The growth and characterization of GaN films on cone-shaped patterned sapphire by MOCVD. J. Semicond., 2013, 34(11): 113002. doi: 10.1088/1674-4926/34/11/113002

[6]

Dongxue Wu, Ping Ma, Boting Liu, Shuo Zhang, Junxi Wang, Jinmin Li. Increased effective reflection and transmission at the GaN-sapphire interface of LEDs grown on patterned sapphire substrates. J. Semicond., 2016, 37(10): 104003. doi: 10.1088/1674-4926/37/10/104003

[7]

Ou Weiying, Zhao Lei, Diao Hongwei, Zhang Jun, Wang Wenjing. Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching. J. Semicond., 2011, 32(5): 056002. doi: 10.1088/1674-4926/32/5/056002

[8]

Yu Tongjun, Kang Xiangning, Qin Zhixin, Chen Zhizhong, Yang Zhijian, Hu Xiaodong, Zhang Guoyi. Strain Effect on Photoluminescence from InGaN/GaN and InGaN/AlGaN MQWs. J. Semicond., 2006, 27(S1): 20.

[9]

T. R. Lenka, G. N. Dash, A. K. Panda. RF and microwave characteristics of a 10 nm thick InGaN-channel gate recessed HEMT. J. Semicond., 2013, 34(11): 114003. doi: 10.1088/1674-4926/34/11/114003

[10]

Xiaojia Wan, Xiaoliang Wang, Hongling Xiao, Chun Feng, Lijuan Jiang, Shenqi Qu, Zhanguo Wang, Xun Hou. Investigation of the current collapse induced in InGaN back barrier AlGaN/GaN high electron mobility transistors. J. Semicond., 2013, 34(10): 104002. doi: 10.1088/1674-4926/34/10/104002

[11]

Ji Xiaoli, Yang Fuhua, Wang Junxi, Duan Ruifei, Ding Kai, Zeng Yiping, Wang Guohong, Li Jinmin. Luminescence distribution and hole transport in asymmetric InGaN multiple-quantum well light-emitting diodes. J. Semicond., 2010, 31(9): 094009. doi: 10.1088/1674-4926/31/9/094009

[12]

Haixiao Wang, Xinhe Zheng, Xinyuan Gan, Naiming Wang, Hui Yang. Designing of 1 eV GaNAs/GaInAs superlattice subcell in current-matched four-junction solar cell. J. Semicond., 2016, 37(1): 014004. doi: 10.1088/1674-4926/37/1/014004

[13]

Zhang Lucheng, Shen Hui. Novel approach for characterizing the specific shunt resistance caused by the penetration of the front contact through the p–n junction in solar cell. J. Semicond., 2009, 30(7): 074007. doi: 10.1088/1674-4926/30/7/074007

[14]

Shao Lexi, Fu Yujun, Zhang Jun, He Deyan. Electrical and Optical Properties of Cu2 ZnSnS4 Thin Films Prepared for Solar Cell Absorber. J. Semicond., 2007, 28(S1): 337.

[15]

K. Kacha, F. Djeffal, H. Ferhati, D. Arar, M. Meguellati. Numerical investigation of a double-junction a:SiGe thin-film solar cell including the multi-trench region. J. Semicond., 2015, 36(6): 064004. doi: 10.1088/1674-4926/36/6/064004

[16]

Deng Qingwen, Wang Xiaoliang, Xiao Hongling, Ma Zeyu, Zhang Xiaobin, Hou Qifeng, Li Jinmin, Wang Zhanguo. Theoretical investigation of efficiency of a p-a-SiC:H/i-a-Si:H/n-μc-Si solar cell. J. Semicond., 2010, 31(10): 103003. doi: 10.1088/1674-4926/31/10/103003

[17]

Utsa Das, Partha P. Pal. ZnO1-xTex and ZnO1-xSx semiconductor alloys as competent materials for opto-electronic and solar cell applications:a comparative analysis. J. Semicond., 2017, 38(8): 082001. doi: 10.1088/1674-4926/38/8/082001

[18]

Pan Dai, Shulong Lu, Lian Ji, Wei He, Lifeng Bian, Hui Yang, M. Arimochi, H. Yoshida, S. Uchida, M. Ikeda. A GaAs/GaInP dual junction solar cell grown by molecular beam epitaxy. J. Semicond., 2013, 34(10): 104006. doi: 10.1088/1674-4926/34/10/104006

[19]

Duofa Wang, Haizheng Tao, Xiujian Zhao, Meiyan Ji, Tianjin Zhang. Enhanced photovoltaic performance in TiO2/P3HT hybrid solar cell by interface modification. J. Semicond., 2015, 36(2): 023006. doi: 10.1088/1674-4926/36/2/023006

[20]

Hongbo Lu, Xinyi Li, Wei Zhang, Dayong Zhou, Mengqi Shi, Lijie Sun, Kaijian Chen. A 2.05 eV AlGaInP sub-cell used in next generation solar cells. J. Semicond., 2014, 35(9): 094010. doi: 10.1088/1674-4926/35/9/094010

Search

Advanced Search >>

GET CITATION

L Jing, H L Xiao, X L Wang, C M Wang, Q W Deng, Z D Li, J Q Ding, Z G Wang, X Hou. Enhanced performance of InGaN/GaN multiple quantum well solar cells with patterned sapphire substrate[J]. J. Semicond., 2013, 34(12): 124004. doi: 10.1088/1674-4926/34/12/124004.

Export: BibTex EndNote

Article Metrics

Article views: 492 Times PDF downloads: 7 Times Cited by: 0 Times

History

Manuscript received: 12 April 2013 Manuscript revised: 03 May 2013 Online: Published: 01 December 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误