J. Semicond. > Volume 34 > Issue 2 > Article Number: 024003

Fluorine-plasma surface treatment for gate forward leakage current reduction in AlGaN/GaN HEMTs

Wanjun Chen 1, , , Jing Zhang 1, , Bo Zhang 1, and Kevin Jing Chen 2,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The gate forward leakage current in AlGaN/GaN high electron mobility transistors (HEMTs) is investigated. It is shown that the current which originated from the forward biased Schottky-gate contributed to the gate forward leakage current. Therefore, a fluorine-plasma surface treatment is presented to induce the negative ions into the AlGaN layer which results in a higher metal-semiconductor barrier. Consequently, the gate forward leakage current shrinks. Experimental results confirm that the gate forward leakage current is decreased by one order magnitude lower than that of HEMT device without plasma treatment. In addition, the DC characteristics of the HEMT device with plasma treatment have been studied.

Key words: fluorine-plasma surface treatmentAlGaN/GaN HEMTsleakage current

Abstract: The gate forward leakage current in AlGaN/GaN high electron mobility transistors (HEMTs) is investigated. It is shown that the current which originated from the forward biased Schottky-gate contributed to the gate forward leakage current. Therefore, a fluorine-plasma surface treatment is presented to induce the negative ions into the AlGaN layer which results in a higher metal-semiconductor barrier. Consequently, the gate forward leakage current shrinks. Experimental results confirm that the gate forward leakage current is decreased by one order magnitude lower than that of HEMT device without plasma treatment. In addition, the DC characteristics of the HEMT device with plasma treatment have been studied.

Key words: fluorine-plasma surface treatmentAlGaN/GaN HEMTsleakage current



References:

[1]

Dora Y, Chakraborty A, McCarthy L. High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates[J]. IEEE Electron Device Lett, 2006, 27: 713. doi: 10.1109/LED.2006.881020

[2]

Chen W, Wong K Y, Huang W. High-performance AlGaN/GaN lateral field-effect rectifiers compatible with high electron mobility transistors[J]. Appl Phys Lett, 2008, 92: 253501. doi: 10.1063/1.2951615

[3]

Chen W, Wong K Y, Chen K J. Single-chip boost converter using monolithically integrated AlGaN/GaN lateral field-effect rectifier and normally-off HEMT[J]. IEEE Electron Device Lett, 2009, 30: 430. doi: 10.1109/LED.2009.2015897

[4]

Miller E J, Dang X Z, Yu E T. Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors[J]. J Appl Phys, 2000, 88: 5951. doi: 10.1063/1.1319972

[5]

Shen L, Palacios T, Poblenz C. Unpassivated high power deeply recessed GaN HEMTs with fluorine-plasma surface treatment[J]. IEEE Electron Device Lett, 2006, 27: 214. doi: 10.1109/LED.2006.871887

[6]

Karmalkar S, Sathaiya D M. Mechanism of the reverse gate leakage in AlGaN/GaN high electron mobility transistors[J]. Appl Phys Lett, 2003, 82: 3976. doi: 10.1063/1.1579852

[7]

Hashizume T, Kotani J, Hasegawa H. Leakage mechanism in GaN and AlGaN Schottky interfaces[J]. Appl Phys Lett, 2004, 84: 4884. doi: 10.1063/1.1762980

[8]

Gu Guodong, Cai Yong, Feng Zhihong. Enhancement-mode InAlN/GaN MISHEMT with low gate leakage current[J]. Journal of Semiconductors, 2012, 33(6): 064004. doi: 10.1088/1674-4926/33/6/064004

[9]

Sanabria C, Chakraborty A, Xu H. The effect of gate leakage on the noise figure of AlGaN/GaN HEMTs[J]. IEEE Electron Device Lett, 2006, 27: 19. doi: 10.1109/LED.2005.860889

[10]

Chen W, Wong K Y, Chen K J. Monolithic integration of lateral field-effect rectifier with normally-off HEMT for GaN-on-Si switch-mode power supply converters[J]. International Electron Devices Meeting (IEDM), San Francisco, 2008: 141.

[11]

Chen W, Zhou C, Chen K J. High-current-density high-voltage normally-off AlGaN/GaN hybrid-gate HEMT with low on-resistance[J]. IET Electron Lett, 2010, 46: 1626. doi: 10.1049/el.2010.1950

[12]

Cai Y, Zhou Y, Chen K J. High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment[J]. IEEE Electron Device Lett, 2005, 26: 435. doi: 10.1109/LED.2005.851122

[13]

Cai Y, Zhou Y, Lau K M. Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment:from depletion mode to enhancement mode[J]. IEEE Trans Electron Devices, 2006, 53: 2207. doi: 10.1109/TED.2006.881054

[14]

Baik K H, Irokawa Y, Ren F. Temperature dependence of forward current characteristics of GaN junction and Schottky rectifiers[J]. Solid-State Electron, 2003, 47(9): 1533. doi: 10.1016/S0038-1101(03)00071-6

[1]

Dora Y, Chakraborty A, McCarthy L. High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates[J]. IEEE Electron Device Lett, 2006, 27: 713. doi: 10.1109/LED.2006.881020

[2]

Chen W, Wong K Y, Huang W. High-performance AlGaN/GaN lateral field-effect rectifiers compatible with high electron mobility transistors[J]. Appl Phys Lett, 2008, 92: 253501. doi: 10.1063/1.2951615

[3]

Chen W, Wong K Y, Chen K J. Single-chip boost converter using monolithically integrated AlGaN/GaN lateral field-effect rectifier and normally-off HEMT[J]. IEEE Electron Device Lett, 2009, 30: 430. doi: 10.1109/LED.2009.2015897

[4]

Miller E J, Dang X Z, Yu E T. Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors[J]. J Appl Phys, 2000, 88: 5951. doi: 10.1063/1.1319972

[5]

Shen L, Palacios T, Poblenz C. Unpassivated high power deeply recessed GaN HEMTs with fluorine-plasma surface treatment[J]. IEEE Electron Device Lett, 2006, 27: 214. doi: 10.1109/LED.2006.871887

[6]

Karmalkar S, Sathaiya D M. Mechanism of the reverse gate leakage in AlGaN/GaN high electron mobility transistors[J]. Appl Phys Lett, 2003, 82: 3976. doi: 10.1063/1.1579852

[7]

Hashizume T, Kotani J, Hasegawa H. Leakage mechanism in GaN and AlGaN Schottky interfaces[J]. Appl Phys Lett, 2004, 84: 4884. doi: 10.1063/1.1762980

[8]

Gu Guodong, Cai Yong, Feng Zhihong. Enhancement-mode InAlN/GaN MISHEMT with low gate leakage current[J]. Journal of Semiconductors, 2012, 33(6): 064004. doi: 10.1088/1674-4926/33/6/064004

[9]

Sanabria C, Chakraborty A, Xu H. The effect of gate leakage on the noise figure of AlGaN/GaN HEMTs[J]. IEEE Electron Device Lett, 2006, 27: 19. doi: 10.1109/LED.2005.860889

[10]

Chen W, Wong K Y, Chen K J. Monolithic integration of lateral field-effect rectifier with normally-off HEMT for GaN-on-Si switch-mode power supply converters[J]. International Electron Devices Meeting (IEDM), San Francisco, 2008: 141.

[11]

Chen W, Zhou C, Chen K J. High-current-density high-voltage normally-off AlGaN/GaN hybrid-gate HEMT with low on-resistance[J]. IET Electron Lett, 2010, 46: 1626. doi: 10.1049/el.2010.1950

[12]

Cai Y, Zhou Y, Chen K J. High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment[J]. IEEE Electron Device Lett, 2005, 26: 435. doi: 10.1109/LED.2005.851122

[13]

Cai Y, Zhou Y, Lau K M. Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment:from depletion mode to enhancement mode[J]. IEEE Trans Electron Devices, 2006, 53: 2207. doi: 10.1109/TED.2006.881054

[14]

Baik K H, Irokawa Y, Ren F. Temperature dependence of forward current characteristics of GaN junction and Schottky rectifiers[J]. Solid-State Electron, 2003, 47(9): 1533. doi: 10.1016/S0038-1101(03)00071-6

[1]

Li Chengzhan, Liu Dan, Zheng Yingkui, Liu Xinyu, Liu Jian, Wei Ke, He Zhijing. Performance Improvement of AlGaN/GaN HEMTs by Surface Treatment Prior to Si3N4 Passivation. J. Semicond., 2008, 29(2): 329.

[2]

Ge Qin, Chen Xiaojuan, Luo Weijun, Yuan Tingting, Pang Lei, Liu Xinyu. A Ku-band high power density AlGaN/GaN HEMT monolithic power amplifier. J. Semicond., 2011, 32(8): 085001. doi: 10.1088/1674-4926/32/8/085001

[3]

Zeng Xuan, Chen Xiaojuan, Liu Guoguo, Yuan Tingting, Chen Zhongzi, Zhang Hui, Wang Liang, Li Chengzhan, Pang Lei, Liu Xinyu, Liu Jian. An 8GHz Internally Matched AlGaN/GaN HEMT Power Amplifier with RC Stability Network. J. Semicond., 2008, 29(8): 1445.

[4]

Ge Qin, Chen Xiaojuan, Luo Weijun, Yuan Tingting, Pu Yan, Liu Xinyu. A Ku band internally matched high power GaN HEMT amplifier with over 30% of PAE. J. Semicond., 2012, 33(1): 014003. doi: 10.1088/1674-4926/33/1/014003

[5]

Wang Chong, Zhang Jinfeng, , Yang Yan, Hao Yue, Feng Qian. Temperature Characteristics of AlGaN/GaN HEMTs Using C-Vand TLM for Evaluating Temperatures. J. Semicond., 2006, 27(5): 864.

[6]

Xin Tan, Yuanjie Lü, Guodong Gu, Li Wang, Shaobo Dun, Xubo Song, Hongyu Guo, Jiayun Yin, Shujun Cai, Zhihong Feng. High performance AlGaN/GaN HEMTs with AlN/SiNx passivation. J. Semicond., 2015, 36(7): 074008. doi: 10.1088/1674-4926/36/7/074008

[7]

Wang Jianhui, Wang Xinhua, Pang Lei, Chen Xiaojuan, Jin Zhi, Liu Xinyu. Effect of varying layouts on the gate temperature for multi-finger AlGaN/GaN HEMTs. J. Semicond., 2012, 33(9): 094004. doi: 10.1088/1674-4926/33/9/094004

[8]

Yao Xiaojiang, Li Bin, Chen Yanhu, Chen Xiaojuan, Wei Ke, Li Chengzhan, Luo Weijun, Wang Xiaoliang, Liu Dan, Liu Guoguo, Liu Xinyu. AlGaN/GaN HEMTs Power Amplifier MIC with Power Combining at C-Band. J. Semicond., 2007, 28(4): 514.

[9]

Yamin Zhang, Shiwei Feng, Hui Zhu, Xueqin Gong, Bing Deng, Lin Ma. Self-heating and traps effects on the drain transient response of AlGaN/GaN HEMTs. J. Semicond., 2014, 35(10): 104003. doi: 10.1088/1674-4926/35/10/104003

[10]

Xue Jiying, Li Tao, Yu Zhiping. Accurate and fast table look-up models for leakage current analysis in 65 nm CMOS technology. J. Semicond., 2009, 30(2): 024004. doi: 10.1088/1674-4926/30/2/024004

[11]

O.Ya Olikh, K.V. Voitenko, R.M. Burbelo, JaM. Olikh. Effect of ultrasound on reverse leakage current of silicon Schottky barrier structure. J. Semicond., 2016, 37(12): 122002. doi: 10.1088/1674-4926/37/12/122002

[12]

Gu Wenping, Chen Chi, Duan Huantao, Hao Yue, Zhang Jincheng, Wang Chong, Feng Qian, Ma Xiaohua. 60Co γ-rays irradiation effect in DC performance of AlGaN/GaN high electron mobility transistors. J. Semicond., 2009, 30(4): 044002. doi: 10.1088/1674-4926/30/4/044002

[13]

Fang Yulong, Dun Shaobo, Liu Bo, Yin Jiayun, Cai Shujun, Feng Zhihong. Extrinsic and intrinsic causes of the electrical degradation of AlGaN/GaN high electron mobility transistors. J. Semicond., 2012, 33(5): 054005. doi: 10.1088/1674-4926/33/5/054005

[14]

Lei Shi, Shiwei Feng, Kun Liu, Yamin Zhang. Mechanism of the self-changing parameters and characteristics in AlGaN/GaN high-electron mobility transistors after a step voltage stress. J. Semicond., 2015, 36(7): 074005. doi: 10.1088/1674-4926/36/7/074005

[15]

Qin Ge, Xinyu Liu, Yingkui Zheng, Chuan Ye. A flat gain GaN MMIC power amplifier for X band application. J. Semicond., 2014, 35(12): 125004. doi: 10.1088/1674-4926/35/12/125004

[16]

Huaguo Liang, Hui Xu, Zhengfeng Huang, Maoxiang Yi. A low-leakage and NBTI-mitigated N-type domino logic. J. Semicond., 2014, 35(1): 015009. doi: 10.1088/1674-4926/35/1/015009

[17]

Gong Na, Wang Jinhui, Guo Baozeng, Pang Jiao. Temperature and Process Variations Aware Dual Threshold Voltage Footed Domino Circuits Leakage Management. J. Semicond., 2008, 29(12): 2364.

[18]

Zhaonian Yang, Hongxia Liu, Shulong Wang. A low leakage power-rail ESD detection circuit with a modified RC network for a 90-nm CMOS process. J. Semicond., 2013, 34(4): 045010. doi: 10.1088/1674-4926/34/4/045010

[19]

Guo Baozeng, Gong Na, Wang Jinhui. Designing Leakage-Tolerant and Noise-Immune Enhanced Low Power Wide OR Dominos in Sub-70nm CMOS Technologies. J. Semicond., 2006, 27(5): 804.

[20]

Jianwei Wu, Zongguang Yu, Genshen Hong, Rubin Xie. Design of GGNMOS ESD protection device for radiation-hardened 0.18 μm CMOS process. J. Semicond., 2020, 41(12): 122403. doi: 10.1088/1674-4926/41/12/122403

Search

Advanced Search >>

GET CITATION

W J Chen, J Zhang, B Zhang, K J Chen. Fluorine-plasma surface treatment for gate forward leakage current reduction in AlGaN/GaN HEMTs[J]. J. Semicond., 2013, 34(2): 024003. doi: 10.1088/1674-4926/34/2/024003.

Export: BibTex EndNote

Article Metrics

Article views: 1427 Times PDF downloads: 14 Times Cited by: 0 Times

History

Manuscript received: 17 May 2012 Manuscript revised: 04 September 2012 Online: Published: 01 February 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误