J. Semicond. > Volume 34 > Issue 2 > Article Number: 025009

A novel switched capacitor bandgap reference with a correlated double sampling structure

Jianguang Chen 1, 2, , , Yueguo Hao 1, 2, and Yuhua Cheng 1, 2,

+ Author Affilications + Find other works by these authors

PDF

Abstract: A switched capacitor bandgap voltage reference with correlated double sampling structure embedded in a temperature sensor is implemented in a standard 0.35 μm CMOS process. Due to the smaller change of the op-amp's output voltage, this topology is very suitable for low power applications. In addition, errors caused by the finite op-amp gain, input offset voltage, and 1/f noise are eliminated with the correlated double sampling technique. Additionally, two-level process calibration techniques are designed to minimize the process spread. Finally, a method of getting a full period valid reference voltage output is discussed and experimental results are provided to verify the effectiveness of the proposed structure.

Key words: bandgapcorrelated double samplinglow powerswitched capacitor

Abstract: A switched capacitor bandgap voltage reference with correlated double sampling structure embedded in a temperature sensor is implemented in a standard 0.35 μm CMOS process. Due to the smaller change of the op-amp's output voltage, this topology is very suitable for low power applications. In addition, errors caused by the finite op-amp gain, input offset voltage, and 1/f noise are eliminated with the correlated double sampling technique. Additionally, two-level process calibration techniques are designed to minimize the process spread. Finally, a method of getting a full period valid reference voltage output is discussed and experimental results are provided to verify the effectiveness of the proposed structure.

Key words: bandgapcorrelated double samplinglow powerswitched capacitor



References:

[1]

Leung K N, Mok P K T, Leung C Y. A 2-V 23-μA 5.3-ppm/℃ curvature-compensated CMOS bandgap voltage reference[J]. IEEE J Solid-State Circuits, 2003, 38(3): 561. doi: 10.1109/JSSC.2002.808328

[2]

Leung C Y, Leunq K N, Mok T K. Design of a 1.5 V high-order curvature-compensated CMOS bandgap reference[J]. Journal of Circuit and System, 2004, 1: 47.

[3]

Gregorie B R. Switched capacitor voltage reference circuits using transconductance circuit to generate reference voltage[J]. USA Patent, No. 6819163, 2004.

[4]

Zheng Peng, Yan Wei, Zhang Ke. An offset-insensitive switched-capacitor bandgap reference with continuous output[J]. Journal of Semiconductors, 2009, 30(8): 085006. doi: 10.1088/1674-4926/30/8/085006

[5]

Martin K, Ozcolak L, Lee Y S. A differential switched-capacitor amplifier[J]. IEEE J Solid-State Circuits, 1987, 22(1): 104. doi: 10.1109/JSSC.1987.1052678

[6]

Lacerda F, Pietri S, Olmos A. A differential switched-capacitor amplifier with programmable gain and output offset voltage[J]. SBCCI, 2006.

[7]

Gray P R, Hurst P J, Lewis S H, et al. Analysis and design of analog integrated circuits. New York:John Wiley & Sons, 2003

[8]

Enz C C, Temes G C. Circuit techniques for reducing the effects of op-amp imperfections:autozeroing, correlated double sampling, and chopper stabilization[J]. Proc IEEE, 1996, 84(11): 1584. doi: 10.1109/5.542410

[9]

Matsumoto H. Spike-free switched-capacitor circuits[J]. Electron Lett, 1987, 23(8): 428. doi: 10.1049/el:19870310

[10]

Ptrtijs M A P, Niederkorn A, Ma X. A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.5℃ from-55℃ to 120℃[J]. IEEE J Solid-State Circuits, 2005, 40(2): 454. doi: 10.1109/JSSC.2004.841013

[1]

Leung K N, Mok P K T, Leung C Y. A 2-V 23-μA 5.3-ppm/℃ curvature-compensated CMOS bandgap voltage reference[J]. IEEE J Solid-State Circuits, 2003, 38(3): 561. doi: 10.1109/JSSC.2002.808328

[2]

Leung C Y, Leunq K N, Mok T K. Design of a 1.5 V high-order curvature-compensated CMOS bandgap reference[J]. Journal of Circuit and System, 2004, 1: 47.

[3]

Gregorie B R. Switched capacitor voltage reference circuits using transconductance circuit to generate reference voltage[J]. USA Patent, No. 6819163, 2004.

[4]

Zheng Peng, Yan Wei, Zhang Ke. An offset-insensitive switched-capacitor bandgap reference with continuous output[J]. Journal of Semiconductors, 2009, 30(8): 085006. doi: 10.1088/1674-4926/30/8/085006

[5]

Martin K, Ozcolak L, Lee Y S. A differential switched-capacitor amplifier[J]. IEEE J Solid-State Circuits, 1987, 22(1): 104. doi: 10.1109/JSSC.1987.1052678

[6]

Lacerda F, Pietri S, Olmos A. A differential switched-capacitor amplifier with programmable gain and output offset voltage[J]. SBCCI, 2006.

[7]

Gray P R, Hurst P J, Lewis S H, et al. Analysis and design of analog integrated circuits. New York:John Wiley & Sons, 2003

[8]

Enz C C, Temes G C. Circuit techniques for reducing the effects of op-amp imperfections:autozeroing, correlated double sampling, and chopper stabilization[J]. Proc IEEE, 1996, 84(11): 1584. doi: 10.1109/5.542410

[9]

Matsumoto H. Spike-free switched-capacitor circuits[J]. Electron Lett, 1987, 23(8): 428. doi: 10.1049/el:19870310

[10]

Ptrtijs M A P, Niederkorn A, Ma X. A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.5℃ from-55℃ to 120℃[J]. IEEE J Solid-State Circuits, 2005, 40(2): 454. doi: 10.1109/JSSC.2004.841013

[1]

Li Jinfeng, Tang Zhen'an. An A/D interface based on Σ Δ modulator for thermal vacuum sensor ASICs. J. Semicond., 2010, 31(7): 075008. doi: 10.1088/1674-4926/31/7/075008

[2]

Hong Zhang, Jie Zhang, Mudan Zhang, Xue Li, Jun Cheng. A multifunctional switched-capacitor programmable gain amplifier for high-definition video analog front-ends. J. Semicond., 2015, 36(3): 035002. doi: 10.1088/1674-4926/36/3/035002

[3]

Xu Yong, Wang Zhigong, Guan Yu, Qiao Lufeng, Zhao Fei. Improved Design of a Bandgap Voltage Referencewith High Accuracy. J. Semicond., 2006, 27(12): 2209.

[4]

Zhenhai Chen, Hongwen Qian, Songren Huang, Hong Zhang, Zongguang Yu. A low power time-interleaved 10-bit 250-MSPS charge domain pipelined ADC for IF sampling. J. Semicond., 2013, 34(6): 065005. doi: 10.1088/1674-4926/34/6/065005

[5]

Tan P H, Luo X D, Ge W K, Xu Z Y, Zhang Y, Mascarenhas A, Xin H P, Tu C W. Resonant Raman Scattering and Photoluminescence Emissions from Above Bandgap Levels in Dilute GaAsN Alloys. J. Semicond., 2006, 27(3): 397.

[6]

Santosh Kumar Gupta, Rupesh Shukla. Bandgap engineered novel g-C3N4/G/h-BN heterostructure for electronic applications. J. Semicond., 2019, 40(3): 032801. doi: 10.1088/1674-4926/40/3/032801

[7]

Ma Haifeng, Zhou Feng, Niu Qi, Lü Changhui. Nested Miller Active-Capacitor Frequency Compensation for Low-Power Three-Stage Amplifiers. J. Semicond., 2008, 29(9): 1698.

[8]

Tong Xingyuan, Zhu Zhangming, Yang Yintang. An offset cancellation technique in a switched-capacitor comparator for SAR ADCs. J. Semicond., 2012, 33(1): 015011. doi: 10.1088/1674-4926/33/1/015011

[9]

Ye Han, Quanliang Li, Cong Shi, Nanjian Wu. A 10-bit column-parallel cyclic ADC for high-speed CMOS image sensors. J. Semicond., 2013, 34(8): 085016. doi: 10.1088/1674-4926/34/8/085016

[10]

Jingjing Wang, Zemin Feng, Rongjin Xu, Chixiao Chen, Fan Ye, Jun Xu, Junyan Ren. A 100 MS/s 9 bit 0.43 mW SAR ADC with custom capacitor array. J. Semicond., 2016, 37(5): 055003. doi: 10.1088/1674-4926/37/5/055003

[11]

Wang Junqian, Yang Haifeng, Wei Rui, Xu Jun, Ren Junyan. A fourth-order bandwidth-reconfigurable delta–sigma modulator for audio applications. J. Semicond., 2012, 33(7): 075002. doi: 10.1088/1674-4926/33/7/075002

[12]

Chen Lei, Zhao Yuanfu, Gao Deyuan, Wen Wu, Wang Zongmin, Zhu Xiaofei. A 16 bit Stereo Audio ΣΔ A/D Converter. J. Semicond., 2006, 27(7): 1183.

[13]

Yin Liang, Liu Xiaowei, Chen Weiping, Zhou Zhiping. High resolution interface circuit for closed-loop accelerometer. J. Semicond., 2011, 32(4): 045005. doi: 10.1088/1674-4926/32/4/045005

[14]

Wang Yunfeng, Shen Haibin, Yan Xiaolang. Design of a Chaotic Random Number Generator. J. Semicond., 2005, 26(12): 2433.

[15]

Miao Qinghai, Lu Shuojin, Zhang Xinghua, Zong Fujian, Zhu Yangjun. The Convergence Characteristic of the Forward I-V Characteristic Curves of a Semiconductor Silicon Barrier at Different Temperatures. J. Semicond., 2008, 29(4): 663.

[16]

Jing Wen, Yumei Wen, Ping Li, Sanshan Wang. Junction-temperature estimation in AlGaInP light-emitting diodes using the luminescence spectra method. J. Semicond., 2016, 37(6): 064010. doi: 10.1088/1674-4926/37/6/064010

[17]

Jianhao Shi, Tong Zhao, Xuechao Li, Meng Huo, Rundong Wan. First-principles calculation on electronic properties of B and N co-doping carbon nanotubes. J. Semicond., 2016, 37(3): 032002. doi: 10.1088/1674-4926/37/3/032002

[18]

Sun Yehui, Jiang Lixin, Qin Shicai. A Low Voltage Low Power CMOS 5Gb/s Transceiver. J. Semicond., 2007, 28(8): 1283.

[19]

Chenjian Wu, Zhiqun Li, Ge Sun. A low voltage low power up-conversion mixer for WSN application. J. Semicond., 2014, 35(4): 045006. doi: 10.1088/1674-4926/35/4/045006

[20]

Ying Jianhua, Chen Jia, Wang Jie. Design of Low Power,High PSRR Voltage Reference. J. Semicond., 2007, 28(6): 975.

Search

Advanced Search >>

GET CITATION

J G Chen, Y G Hao, Y H Cheng. A novel switched capacitor bandgap reference with a correlated double sampling structure[J]. J. Semicond., 2013, 34(2): 025009. doi: 10.1088/1674-4926/34/2/025009.

Export: BibTex EndNote

Article Metrics

Article views: 586 Times PDF downloads: 12 Times Cited by: 0 Times

History

Manuscript received: 25 June 2012 Manuscript revised: 29 August 2012 Online: Published: 01 February 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误