J. Semicond. > Volume 34 > Issue 4 > Article Number: 044002

A 2DEG charge density based drain current model for various Al and In molefraction mobility dependent nano-scale AlInGaN/AlN/GaN HEMT devices

Godwin Raj 1, , Hemant Pardeshi 1, , , Sudhansu Kumar Pati 1, , N Mohankumar 2, and Chandan Kumar Sarkar 1,

+ Author Affilications + Find other works by these authors

PDF

Abstract: We present a two-dimensional electron gas (2DEG) charge-control mobility variation based drain current model for sheet carrier density in the channel. The model was developed for the AlInGaN/AlN/GaN high-electron-mobility transistor. The sheet carrier density model used here accounts for the independence between the Fermi levels Ef and ns along with mobility for various Al and In molefractions. This physics based ns model fully depends upon the variation of Ef, u0, the first subband E0, the second subband E1, and ns. We present a physics based analytical drain current model using ns with the minimum set of parameters. The analytical results obtained are compared with the experimental results for four samples with various molefraction and barrier thickness. A good agreement between the results is obtained, thus validating the model.

Key words: 2DEGFermi levelAlInGaN

Abstract: We present a two-dimensional electron gas (2DEG) charge-control mobility variation based drain current model for sheet carrier density in the channel. The model was developed for the AlInGaN/AlN/GaN high-electron-mobility transistor. The sheet carrier density model used here accounts for the independence between the Fermi levels Ef and ns along with mobility for various Al and In molefractions. This physics based ns model fully depends upon the variation of Ef, u0, the first subband E0, the second subband E1, and ns. We present a physics based analytical drain current model using ns with the minimum set of parameters. The analytical results obtained are compared with the experimental results for four samples with various molefraction and barrier thickness. A good agreement between the results is obtained, thus validating the model.

Key words: 2DEGFermi levelAlInGaN



References:

[1]

Shur M S. GaN based transistors for high power applications[J]. Solid-State Electron, 1998, 42: 2131. doi: 10.1016/S0038-1101(98)00208-1

[2]

Mishra U K, Shen L, Kazior T E. GaN-based RF power devices and amplifiers[J]. Proc IEEE, 2008, 96: 287. doi: 10.1109/JPROC.2007.911060

[3]

Shen L, Heikman S, Moran B. AlGaN/AlN/GaN high-power microwave HEMT[J]. IEEE Electron Device Lett, 2001, 22: 457. doi: 10.1109/55.954910

[4]

Simin G, Koudymov A, Fatima H. SiO2/AlGaN/InGaN/GaN MOSDHFETs[J]. IEEE Electron Device Lett, 2002, 23: 458. doi: 10.1109/LED.2002.801316

[5]

Balmer R S, Hilton K P, Nash K J. AlGaN/GaN microwave HFET including a thin AlN carrier exclusion layer[J]. Phys Status Solidi C, 2003, 0: 2331. doi: 10.1002/(ISSN)1610-1642

[6]

Wang C M, Wang X L, Hu G X. Influence of AlN interfacial layer on electrical properties of high-Al-content Al0.45Ga0.55N/GaN HEMT structure[J]. Appl Surf Sci, 2006, 253: 762. doi: 10.1016/j.apsusc.2006.01.017

[7]

Hashimoto S, Akita K, Tanabe T. Study of two-dimensional electron gas in AlGaN channel HEMTs with high crystalline quality[J]. Phys Status Solidi C, 2010, 7: 1938. doi: 10.1002/pssc.v7:7/8

[8]

Medjdoub F, Carlin J F, Gonschorek M. Can InAlN/GaN be an alternative to high power/high temperature AlGaN/GaN devices[J]. IEDM Tech Dig, 2006: 927.

[9]

Wang H, Chung J, Gao X. Al2O3 passivated InAlN/GaN HEMTs on SiC substrate with record current density and transconductance[J]. Phys Status Solidi C, 2010, 7(10): 2440. doi: 10.1002/pssc.200983899

[10]

Sun H, Alt A R, Benedickter H. 205-GHz (Al, In)N/GaN HEMTs[J]. IEEE Electron Device Lett, 2010, 31(9): 957. doi: 10.1109/LED.2010.2055826

[11]

Wang R, Sanier P, Xing X. Gate-recessed enhancement-mode InAlN/AlN/GaN HEMTs with 1.9 A/mm drain current density and 800 mS/mm transconductance[J]. IEEE Electron Device Lett, 2010, 31(12): 1383. doi: 10.1109/LED.2010.2072771

[12]

Wang R, Saunier P, Tang Y. Enhancement-mode InAlN/AlN/GaN HEMTs with 10-12 A/mm leakage current and 1012 on/off current ratio[J]. IEEE Electron Device Lett, 2011, 32(3): 309. doi: 10.1109/LED.2010.2095494

[13]

Crespo A, Bellot M M, Chabak K D. High-power Ka-band performance of AlInN/GaN HEMT with 9.8-nm-thin barrier[J]. IEEE Electron Device Lett, 2010, 31(1): 2. doi: 10.1109/LED.2009.2034875

[14]

Tang Y, Saunier P, Wang R. High-performance monolithically integrated E/D mode InAlN/AlN/GaN HEMTs for mixed-signal applications[J]. IEDM Tech Dig, 2010, 30(4): 1.

[15]

Lee D S, Gao X, Guo S. InAlN/GaN HEMTs with AlGaN back barriers[J]. IEEE Electron Device Lett, 2011, 32(5): 617. doi: 10.1109/LED.2011.2111352

[16]

Wang R, Li G, Laboutin O. 210 GHz InAlN/GaN HEMTs with dielectric free passivation[J]. IEEE Electron Device Lett, 2011, 32(7): 892. doi: 10.1109/LED.2011.2147753

[17]

Cao Y, Wang K, Li G. MBE growth of high conductivity single and multiple AlN/GaN heterojunctions[J]. J Cryst Growth, 2011, 323(1): 529. doi: 10.1016/j.jcrysgro.2010.12.047

[18]

Takayama T, Yuri M, Itoh K. Analysis of phase-separation region in wurtzite group Ⅲ nitride quaternary material system using modified valence force field model[J]. J Cryst Growth, 2001, 222(1/2): 29.

[19]

Ketteniss N, Khoshroo L R, Eickelkamp M. Study on quaternary AlInGaN/GaN HFETs grown on sapphire substrates[J]. Semicond Sci Technol, 2010, 25(7): 075013. doi: 10.1088/0268-1242/25/7/075013

[20]

Lim T, Aidam R, Waltereit P. GaN-based submicrometer HEMTs with lattice-matched InAlGaN barrier grown by MBE[J]. IEEE Electron Device Lett, 2010, 31(7): 671. doi: 10.1109/LED.2010.2048996

[21]

Hirayama H, Kinoshita A, Yamabi T. Marked enhancement of 320-360 nm ultraviolet emission in quaternary InxAlyGa1-x-yN with In-segregation effect[J]. Appl Phys Lett, 2002, 80(2): 207. doi: 10.1063/1.1433162

[22]

Asgari A, Kalafi M, Faraone L. A quasi-two-dimensional charge transport model of AlGaN/GaN high electron mobility transistors (HEMTs)[J]. Phys E, 2005, 28(4): 491. doi: 10.1016/j.physe.2005.05.054

[23]

Cheng X, Wang Y. A surface-potential-based compact model for AlGaN/GaN MODFET[J]. IEEE Trans Electron Devices, 2011, 58: 448. doi: 10.1109/TED.2010.2089690

[24]

Khandelwal S, Goyal N, Fjeldly T A. A physics-based analytical model for 2DEG charge density in AlGaN/GaN HEMT devices[J]. IEEE Tran Electron Devices, 2011, 58: 3622. doi: 10.1109/TED.2011.2161314

[25]

Ketteniss N, Khoshroo L R, Eickelkamp M. Study on quaternary AlInGaN/GaN HFETs grown on sapphire substrates[J]. Semicond Sci Technol, 2010, 25(7): 075013. doi: 10.1088/0268-1242/25/7/075013

[26]

Khoshroo L R, Ketteniss N, Mauder C. Quaternary nitride heterostructure field effect transistors[J]. Phys Status Solidi C, 2010, 7(7/8): 2001.

[27]

Wang R, Li G, Verma J. 220-GHz quaternary barrier InAlGaN/AlN/GaN HEMTs[J]. IEEE Electron Device Lett, 2011, 32(9): 1215. doi: 10.1109/LED.2011.2158288

[28]

Kola S, Golio J M, Maracas G N. An analytical expression for Fermi level versus sheet carrier concentration for HEMT modeling[J]. IEEE Electron Devices Lett, 1988, 9(3): 136. doi: 10.1109/55.2067

[29]

Lee R R, Svensson S P, Lugli P. Pseudomorphic HEMT technology and Applications[J]. Kluwer Academic Publishers, 1996: 156.

[30]

Ytterdal T, Cheng Y, Fjeldly T A. Device modelling for analog and RF circuit design[J]. John Willey and Sons, 2003: 31.

[31]

Williams C K, Glisson T H, Hauser J R. Energy bandgap and lattice constant contours of Ⅲ-Ⅴ quaternary alloys of the form AxByCzD or ABxCyDz[J]. J Electron Mater, 1978, 7(5): 639. doi: 10.1007/BF02655439

[1]

Shur M S. GaN based transistors for high power applications[J]. Solid-State Electron, 1998, 42: 2131. doi: 10.1016/S0038-1101(98)00208-1

[2]

Mishra U K, Shen L, Kazior T E. GaN-based RF power devices and amplifiers[J]. Proc IEEE, 2008, 96: 287. doi: 10.1109/JPROC.2007.911060

[3]

Shen L, Heikman S, Moran B. AlGaN/AlN/GaN high-power microwave HEMT[J]. IEEE Electron Device Lett, 2001, 22: 457. doi: 10.1109/55.954910

[4]

Simin G, Koudymov A, Fatima H. SiO2/AlGaN/InGaN/GaN MOSDHFETs[J]. IEEE Electron Device Lett, 2002, 23: 458. doi: 10.1109/LED.2002.801316

[5]

Balmer R S, Hilton K P, Nash K J. AlGaN/GaN microwave HFET including a thin AlN carrier exclusion layer[J]. Phys Status Solidi C, 2003, 0: 2331. doi: 10.1002/(ISSN)1610-1642

[6]

Wang C M, Wang X L, Hu G X. Influence of AlN interfacial layer on electrical properties of high-Al-content Al0.45Ga0.55N/GaN HEMT structure[J]. Appl Surf Sci, 2006, 253: 762. doi: 10.1016/j.apsusc.2006.01.017

[7]

Hashimoto S, Akita K, Tanabe T. Study of two-dimensional electron gas in AlGaN channel HEMTs with high crystalline quality[J]. Phys Status Solidi C, 2010, 7: 1938. doi: 10.1002/pssc.v7:7/8

[8]

Medjdoub F, Carlin J F, Gonschorek M. Can InAlN/GaN be an alternative to high power/high temperature AlGaN/GaN devices[J]. IEDM Tech Dig, 2006: 927.

[9]

Wang H, Chung J, Gao X. Al2O3 passivated InAlN/GaN HEMTs on SiC substrate with record current density and transconductance[J]. Phys Status Solidi C, 2010, 7(10): 2440. doi: 10.1002/pssc.200983899

[10]

Sun H, Alt A R, Benedickter H. 205-GHz (Al, In)N/GaN HEMTs[J]. IEEE Electron Device Lett, 2010, 31(9): 957. doi: 10.1109/LED.2010.2055826

[11]

Wang R, Sanier P, Xing X. Gate-recessed enhancement-mode InAlN/AlN/GaN HEMTs with 1.9 A/mm drain current density and 800 mS/mm transconductance[J]. IEEE Electron Device Lett, 2010, 31(12): 1383. doi: 10.1109/LED.2010.2072771

[12]

Wang R, Saunier P, Tang Y. Enhancement-mode InAlN/AlN/GaN HEMTs with 10-12 A/mm leakage current and 1012 on/off current ratio[J]. IEEE Electron Device Lett, 2011, 32(3): 309. doi: 10.1109/LED.2010.2095494

[13]

Crespo A, Bellot M M, Chabak K D. High-power Ka-band performance of AlInN/GaN HEMT with 9.8-nm-thin barrier[J]. IEEE Electron Device Lett, 2010, 31(1): 2. doi: 10.1109/LED.2009.2034875

[14]

Tang Y, Saunier P, Wang R. High-performance monolithically integrated E/D mode InAlN/AlN/GaN HEMTs for mixed-signal applications[J]. IEDM Tech Dig, 2010, 30(4): 1.

[15]

Lee D S, Gao X, Guo S. InAlN/GaN HEMTs with AlGaN back barriers[J]. IEEE Electron Device Lett, 2011, 32(5): 617. doi: 10.1109/LED.2011.2111352

[16]

Wang R, Li G, Laboutin O. 210 GHz InAlN/GaN HEMTs with dielectric free passivation[J]. IEEE Electron Device Lett, 2011, 32(7): 892. doi: 10.1109/LED.2011.2147753

[17]

Cao Y, Wang K, Li G. MBE growth of high conductivity single and multiple AlN/GaN heterojunctions[J]. J Cryst Growth, 2011, 323(1): 529. doi: 10.1016/j.jcrysgro.2010.12.047

[18]

Takayama T, Yuri M, Itoh K. Analysis of phase-separation region in wurtzite group Ⅲ nitride quaternary material system using modified valence force field model[J]. J Cryst Growth, 2001, 222(1/2): 29.

[19]

Ketteniss N, Khoshroo L R, Eickelkamp M. Study on quaternary AlInGaN/GaN HFETs grown on sapphire substrates[J]. Semicond Sci Technol, 2010, 25(7): 075013. doi: 10.1088/0268-1242/25/7/075013

[20]

Lim T, Aidam R, Waltereit P. GaN-based submicrometer HEMTs with lattice-matched InAlGaN barrier grown by MBE[J]. IEEE Electron Device Lett, 2010, 31(7): 671. doi: 10.1109/LED.2010.2048996

[21]

Hirayama H, Kinoshita A, Yamabi T. Marked enhancement of 320-360 nm ultraviolet emission in quaternary InxAlyGa1-x-yN with In-segregation effect[J]. Appl Phys Lett, 2002, 80(2): 207. doi: 10.1063/1.1433162

[22]

Asgari A, Kalafi M, Faraone L. A quasi-two-dimensional charge transport model of AlGaN/GaN high electron mobility transistors (HEMTs)[J]. Phys E, 2005, 28(4): 491. doi: 10.1016/j.physe.2005.05.054

[23]

Cheng X, Wang Y. A surface-potential-based compact model for AlGaN/GaN MODFET[J]. IEEE Trans Electron Devices, 2011, 58: 448. doi: 10.1109/TED.2010.2089690

[24]

Khandelwal S, Goyal N, Fjeldly T A. A physics-based analytical model for 2DEG charge density in AlGaN/GaN HEMT devices[J]. IEEE Tran Electron Devices, 2011, 58: 3622. doi: 10.1109/TED.2011.2161314

[25]

Ketteniss N, Khoshroo L R, Eickelkamp M. Study on quaternary AlInGaN/GaN HFETs grown on sapphire substrates[J]. Semicond Sci Technol, 2010, 25(7): 075013. doi: 10.1088/0268-1242/25/7/075013

[26]

Khoshroo L R, Ketteniss N, Mauder C. Quaternary nitride heterostructure field effect transistors[J]. Phys Status Solidi C, 2010, 7(7/8): 2001.

[27]

Wang R, Li G, Verma J. 220-GHz quaternary barrier InAlGaN/AlN/GaN HEMTs[J]. IEEE Electron Device Lett, 2011, 32(9): 1215. doi: 10.1109/LED.2011.2158288

[28]

Kola S, Golio J M, Maracas G N. An analytical expression for Fermi level versus sheet carrier concentration for HEMT modeling[J]. IEEE Electron Devices Lett, 1988, 9(3): 136. doi: 10.1109/55.2067

[29]

Lee R R, Svensson S P, Lugli P. Pseudomorphic HEMT technology and Applications[J]. Kluwer Academic Publishers, 1996: 156.

[30]

Ytterdal T, Cheng Y, Fjeldly T A. Device modelling for analog and RF circuit design[J]. John Willey and Sons, 2003: 31.

[31]

Williams C K, Glisson T H, Hauser J R. Energy bandgap and lattice constant contours of Ⅲ-Ⅴ quaternary alloys of the form AxByCzD or ABxCyDz[J]. J Electron Mater, 1978, 7(5): 639. doi: 10.1007/BF02655439

[1]

Wen Feng, Liu Deming, Huang Lirong. Research on Optimizing Barrier Material for AlInGaN Quantum Wells. J. Semicond., 2007, 28(6): 893.

[2]

Liu Naixin, Wang Junxi, Yan Jianchang, Liu Zhe, Ruan Jun, Li Jinmin. Characterization of quaternary AlInGaN epilayers and polarization-reduced InGaN/AlInGaN MQWgrown by MOCVD. J. Semicond., 2009, 30(11): 113003. doi: 10.1088/1674-4926/30/11/113003

[3]

Li Shuping, Wang Renzhi. Average-Bond-Energy and Fermi Level on Metal-Semiconductor Contacts. J. Semicond., 2006, 27(5): 834.

[4]

J. Panda, K. Jena, R. Swain, T. R. Lenka. Modeling on oxide dependent 2DEG sheet charge density and threshold voltage in AlGaN/GaN MOSHEMT. J. Semicond., 2016, 37(4): 044003. doi: 10.1088/1674-4926/37/4/044003

[5]

Ken K. Chin. Local charge neutrality condition, Fermi level and majority carrier density of a semiconductor with multiple localized multi-level intrinsic/impurity defects. J. Semicond., 2011, 32(11): 112001. doi: 10.1088/1674-4926/32/11/112001

[6]

S. Theodore Chandra, N. B. Balamurugan, M. Bhuvaneswari, N. Anbuselvan, N. Mohankumar. Analysis of charge density and Fermi level of AlInSb/InSb single-gate high electron mobility transistor. J. Semicond., 2015, 36(6): 064003. doi: 10.1088/1674-4926/36/6/064003

[7]

Devashish Pandey, T.R. Lenka. Model development for analyzing 2DEG sheet charge density and threshold voltage considering interface DOS for AlInN/GaN MOSHEMT. J. Semicond., 2014, 35(10): 104001. doi: 10.1088/1674-4926/35/10/104001

[8]

Ken K. Chin, Zimeng Cheng. Semiconductor steady state defect effective Fermi level and deep level transient spectroscopy depth profiling. J. Semicond., 2016, 37(9): 092003. doi: 10.1088/1674-4926/37/9/092003

[9]

Zhao Jianzhi, Lin Zhaojun, Corrigan T D, Zhang Yu, Li Huijun, Wang Zhanguo. Influence of annealed ohmic contact metals on electron mobility of strained AlGaN/GaN heterostructures. J. Semicond., 2009, 30(10): 102003. doi: 10.1088/1674-4926/30/10/102003

[10]

Tao Chunmin, Tao Yaqi, Chen Cheng, Kong Yuechan, Chen Dunjun, Shen Bo, , Jiao Gang, Chen Tangsheng, Zhang Rong. High-Temperature Transport Properties of 2DEG in AlGaN/GaN Heterostructures. J. Semicond., 2006, 27(7): 1251.

[11]

T. R. Lenka, G. N. Dash, A. K. Panda. RF and microwave characteristics of a 10 nm thick InGaN-channel gate recessed HEMT. J. Semicond., 2013, 34(11): 114003. doi: 10.1088/1674-4926/34/11/114003

[12]

Jie Wang, Lingling Sun, Jun Liu, Mingzhu Zhou. A surface-potential-based model for AlGaN/AlN/GaN HEMT. J. Semicond., 2013, 34(9): 094002. doi: 10.1088/1674-4926/34/9/094002

[13]

Lu Shenghui, Du Jiangfeng, Luo Qian, Yu Qi, Zhou Wei, Xia Jianxin, Yang Mohua. Analytical charge control model for AlGaN/GaN MIS-HFETs includingan undepleted barrier layer. J. Semicond., 2010, 31(9): 094004. doi: 10.1088/1674-4926/31/9/094004

[14]

Bi Yang, Wang Xiaoliang, Xiao Hongling, Wang Cuimei, Yang Cuibai, Peng Enchao, Lin Defeng, Feng Chun, Jiang Lijuan. Simulation of electrical properties of InxAl1-xN/AlN/GaN high electron mobility transistor structure. J. Semicond., 2011, 32(8): 083003. doi: 10.1088/1674-4926/32/8/083003

[15]

Ziliang Cai, Ming Li, Libo Fan. Sheet carrier density dependent Rashba spin splitting in the Al0.5Ga0.5N/GaN/Al0.5Ga0.5N quantum well. J. Semicond., 2014, 35(9): 092002. doi: 10.1088/1674-4926/35/9/092002

[16]

Kanjalochan Jena, Raghunandan Swain, T. R. Lenka. Impact of barrier thickness on gate capacitance——modeling and comparative analysis of GaN based MOSHEMTs. J. Semicond., 2015, 36(3): 034003. doi: 10.1088/1674-4926/36/3/034003

[17]

Wang Chong, Zhang Jinfeng, , Yang Yan, Hao Yue, Feng Qian. Temperature Characteristics of AlGaN/GaN HEMTs Using C-Vand TLM for Evaluating Temperatures. J. Semicond., 2006, 27(5): 864.

[18]

, , , , , , , , , . . J. Semicond., 2005, 26(6): 1116.

[19]

Wang Wei, Wang Jing, Zhao Mei, Liang Renrong, Xu Jun. Fermi level depinning by a C-containing layer in a metal/Ge structure by using a chemical bath. J. Semicond., 2012, 33(10): 102004. doi: 10.1088/1674-4926/33/10/102004

[20]

Ken K. Chin. Approximate Graphic Method for Solving Fermi Level and Majority Carrier Density of Semiconductors with Multiple Donors and Multiple Acceptors. J. Semicond., 2011, 32(6): 062001. doi: 10.1088/1674-4926/32/6/062001

Search

Advanced Search >>

GET CITATION

G Raj, H Pardeshi, S K Pati, N Mohankumar, C K Sarkar. A 2DEG charge density based drain current model for various Al and In molefraction mobility dependent nano-scale AlInGaN/AlN/GaN HEMT devices[J]. J. Semicond., 2013, 34(4): 044002. doi: 10.1088/1674-4926/34/4/044002.

Export: BibTex EndNote

Article Metrics

Article views: 802 Times PDF downloads: 18 Times Cited by: 0 Times

History

Manuscript received: 19 June 2012 Manuscript revised: 23 November 2012 Online: Published: 01 April 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误