J. Semicond. > Volume 34 > Issue 5 > Article Number: 054001

On-current modeling of short-channel double-gate (DG) MOSFETs with a vertical Gaussian-like doping profile

Sarvesh Dubey 1, , Kumar Tiwari 2, and S. Jit 1, ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: An analytic drain current model is presented for doped short-channel double-gate MOSFETs with a Gaussian-like doping profile in the vertical direction of the channel. The present model is valid in linear and saturation regions of device operation. The drain current variation with various device parameters has been demonstrated. The model is made more physical by incorporating the channel length modulation effect. Parameters like transconductance and drain conductance that are important in assessing the analog performance of the device have also been formulated. The model results are validated by numerical simulation results obtained by using the commercially available ATLASTM, a two dimensional device simulator from SILVACO.

Key words: drain currentDG MOSFETtransconductancedrain conductance

Abstract: An analytic drain current model is presented for doped short-channel double-gate MOSFETs with a Gaussian-like doping profile in the vertical direction of the channel. The present model is valid in linear and saturation regions of device operation. The drain current variation with various device parameters has been demonstrated. The model is made more physical by incorporating the channel length modulation effect. Parameters like transconductance and drain conductance that are important in assessing the analog performance of the device have also been formulated. The model results are validated by numerical simulation results obtained by using the commercially available ATLASTM, a two dimensional device simulator from SILVACO.

Key words: drain currentDG MOSFETtransconductancedrain conductance



References:

[1]

I. T. R. S. , 2008

[2]

Wong H S P. Beyond the conventional transistor[J]. IBM J Res Devices, 2002, 46: 133. doi: 10.1147/rd.462.0133

[3]

Wong H S P, Frank D J, Solomon P M. Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET's at the 25 nm channel length generation[J]. IEDM Tech Dig, 1998: 407.

[4]

Kolberg S. Modeling of electrostatics and drain current in nanoscale double-gate MOSFETs. PhD Thesis, Norwegian University of Science and Technology, 2007

[5]

Suzuki K, Sugii T. Analytical models for n+-p+ double-gate SOI MOSFET's[J]. IEEE Trans Electron Devices, 1995, 42: 1940. doi: 10.1109/16.469401

[6]

Taur Y, Liang X, Wang W. A continuous, analytic drain-current model for DG MOSFETs[J]. IEEE Electron Device Lett, 2004, 25: 107. doi: 10.1109/LED.2003.822661

[7]

Hariharan V, Vasi J, Rao V R. Drain current model including velocity saturation for symmetric double-gate MOSFETs[J]. IEEE Trans Electron Devices, 2008, 55: 2173. doi: 10.1109/TED.2008.926745

[8]

Reyboz M, Martin P, Poiroux T. Continuous model for independent double gate MOSFET[J]. Solid-State Electron, 2009, 53: 504. doi: 10.1016/j.sse.2009.02.005

[9]

Mohammadi S, Afzali-Kusha A. Modeling of drain current, capacitance and transconductance in thin film undoped symmetric DG MOSFETs including quantum effects[J]. Microelectron Reliab, 2010, 50: 338. doi: 10.1016/j.microrel.2009.12.002

[10]

Ioannidis E G, Theodorou C G, Tsormpatzoglou A. Analytical low-frequency noise model in the linear region of lightly doped nanoscale double-gate metal-oxide-semiconductor field-effect transistors[J]. J Appl Phys, 2010, 108: 064512. doi: 10.1063/1.3483279

[11]

Papathanasiou K, Theodorou C G, Tsormpatzoglou A. Symmetrical unified compact model of short-channel double-gate MOSFETs[J]. Solid-State Electron, 2012, 69: 55. doi: 10.1016/j.sse.2011.10.002

[12]

Dubey S, Tiwari P K, Jit S. A two-dimensional model for the potential distribution and threshold voltage of short-channel double-gate metal-oxide-semiconductor field-effect transistors with a vertical Gaussian-like doping profile[J]. J Appl Phys, 2010, 108: 034518. doi: 10.1063/1.3460796

[13]

Jin X, Liu X, Lee J H. A continuous current model of fully-depleted symmetric double-gate MOSFETs considering a wide range of body doping concentrations[J]. Semicond Sci Technol, 2010, 25: 055018. doi: 10.1088/0268-1242/25/5/055018

[14]

Kranti A, Chung T M, Flandre D. Laterally asymmetric channel engineering in fully depleted double gate SOI MOSFET for high performance analog applications[J]. Solid-State Electron, 2004, 48: 947. doi: 10.1016/j.sse.2003.12.014

[15]

Moldovan O, Cerdeira A, Jiménez D. Compact model for highly-doped double-gate SOI MOSFETs targeting baseband analog applications[J]. Solid-State Electron, 2007, 51: 655. doi: 10.1016/j.sse.2007.02.039

[16]

Cerdeira A, Iñguez B, Estrada M. Compact model for short channel symmetric doped double-gate MOSFETs[J]. Solid-State Electron, 2008, 52: 1064. doi: 10.1016/j.sse.2008.03.009

[17]

Choi B K, Jeong M K, Kwon H I. Compact current modeling of fully depleted double-gate MOSFETs with doped short-channel[J]. Jpn J Appl Phys, 2008, 47: 8253. doi: 10.1143/JJAP.47.8253

[18]

Sallese J M, Chevillon N, Prégaldiny F. The equivalent-thickness concept for doped symmetric DG MOSFETs[J]. IEEE Trans Electron Devices, 2010, 57: 2917. doi: 10.1109/TED.2010.2071090

[19]

Dasgupta A, Lahiri S K. A two-dimensional analytical model of threshold voltages of short-channel MOSFETs with Gaussian-doped channels[J]. IEEE Trans Electron Devices, 1988, 35: 390. doi: 10.1109/16.2468

[20]

Dubey S, Tiwari P K, Jit S. A two-dimensional model for the surface potential and subthreshold current of doped double-gate (DG) MOSFETs with a vertical Gaussian-like doping profile[J]. J Nanoelectron Optoelectron, 2010, 5: 332. doi: 10.1166/jno.2010.1119

[21]

Dubey S, Tiwari P K, Jit S. A two-dimensional model for the subthreshold swing of short-channel double-gate metal-oxide-semiconductor field-effect transistors with a vertical Gaussian-like doping profile[J]. J App Phys, 2011, 109: 054508. doi: 10.1063/1.3552309

[22]

ATLAS manual: SILVACO Int. Santa Clara, 2008

[23]

Taur Y, Ning T H. Fundamentals of modern VLSI devices. Cambridge:Cambridge University Press, 1998

[24]

Hou D Q, Xia Z L, Du G. Computational investigation of velocity overshoot effects in double gate MOSFETs[J]. Proc IEEE, 2004: 1015.

[25]

Arora N D, Hauser J R, Roulston D J. Electron and hole mobilities in silicon as a function of concentration and temperature[J]. IEEE Trans Electron Devices, 1982, 29: 292. doi: 10.1109/T-ED.1982.20698

[26]

Kranti A, Haldar S, Gupta R S. An accurate 2D analytical model for short channel thin film fully depleted cylindrical/surrounding gate (CGT/SGT) MOSFET[J]. Microelectron J, 2001, 32: 305. doi: 10.1016/S0026-2692(01)00008-8

[27]

Rajendran K, Samudra G S. Modelling of transconductance-to-current ratio (gm/ID) analysis on double-gate SOI MOSFETs[J]. Semicond Sci Technol, 2000, 15: 139. doi: 10.1088/0268-1242/15/2/311

[28]

Jankovic N D, Armstrong G A. Comparative analysis of the DC performance of DG MOSFETs on highly-doped and near-intrinsic silicon layers[J]. J Microelectron, 2004, 35: 647. doi: 10.1016/j.mejo.2004.04.007

[29]

Trivedi V P, Armstrong G A. Quantum-mechanical effects on the threshold voltage of undoped double-gate MOSFET[J]. IEEE Electron Device Lett, 2005, 26: 579. doi: 10.1109/LED.2005.852741

[30]

Chiang M H, Lin C N, Lin G S. Threshold voltage sensitivity to doping density in extremely scaled MOSFETs[J]. Semicond Sci Technol, 2006, 21: 190. doi: 10.1088/0268-1242/21/2/017

[1]

I. T. R. S. , 2008

[2]

Wong H S P. Beyond the conventional transistor[J]. IBM J Res Devices, 2002, 46: 133. doi: 10.1147/rd.462.0133

[3]

Wong H S P, Frank D J, Solomon P M. Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET's at the 25 nm channel length generation[J]. IEDM Tech Dig, 1998: 407.

[4]

Kolberg S. Modeling of electrostatics and drain current in nanoscale double-gate MOSFETs. PhD Thesis, Norwegian University of Science and Technology, 2007

[5]

Suzuki K, Sugii T. Analytical models for n+-p+ double-gate SOI MOSFET's[J]. IEEE Trans Electron Devices, 1995, 42: 1940. doi: 10.1109/16.469401

[6]

Taur Y, Liang X, Wang W. A continuous, analytic drain-current model for DG MOSFETs[J]. IEEE Electron Device Lett, 2004, 25: 107. doi: 10.1109/LED.2003.822661

[7]

Hariharan V, Vasi J, Rao V R. Drain current model including velocity saturation for symmetric double-gate MOSFETs[J]. IEEE Trans Electron Devices, 2008, 55: 2173. doi: 10.1109/TED.2008.926745

[8]

Reyboz M, Martin P, Poiroux T. Continuous model for independent double gate MOSFET[J]. Solid-State Electron, 2009, 53: 504. doi: 10.1016/j.sse.2009.02.005

[9]

Mohammadi S, Afzali-Kusha A. Modeling of drain current, capacitance and transconductance in thin film undoped symmetric DG MOSFETs including quantum effects[J]. Microelectron Reliab, 2010, 50: 338. doi: 10.1016/j.microrel.2009.12.002

[10]

Ioannidis E G, Theodorou C G, Tsormpatzoglou A. Analytical low-frequency noise model in the linear region of lightly doped nanoscale double-gate metal-oxide-semiconductor field-effect transistors[J]. J Appl Phys, 2010, 108: 064512. doi: 10.1063/1.3483279

[11]

Papathanasiou K, Theodorou C G, Tsormpatzoglou A. Symmetrical unified compact model of short-channel double-gate MOSFETs[J]. Solid-State Electron, 2012, 69: 55. doi: 10.1016/j.sse.2011.10.002

[12]

Dubey S, Tiwari P K, Jit S. A two-dimensional model for the potential distribution and threshold voltage of short-channel double-gate metal-oxide-semiconductor field-effect transistors with a vertical Gaussian-like doping profile[J]. J Appl Phys, 2010, 108: 034518. doi: 10.1063/1.3460796

[13]

Jin X, Liu X, Lee J H. A continuous current model of fully-depleted symmetric double-gate MOSFETs considering a wide range of body doping concentrations[J]. Semicond Sci Technol, 2010, 25: 055018. doi: 10.1088/0268-1242/25/5/055018

[14]

Kranti A, Chung T M, Flandre D. Laterally asymmetric channel engineering in fully depleted double gate SOI MOSFET for high performance analog applications[J]. Solid-State Electron, 2004, 48: 947. doi: 10.1016/j.sse.2003.12.014

[15]

Moldovan O, Cerdeira A, Jiménez D. Compact model for highly-doped double-gate SOI MOSFETs targeting baseband analog applications[J]. Solid-State Electron, 2007, 51: 655. doi: 10.1016/j.sse.2007.02.039

[16]

Cerdeira A, Iñguez B, Estrada M. Compact model for short channel symmetric doped double-gate MOSFETs[J]. Solid-State Electron, 2008, 52: 1064. doi: 10.1016/j.sse.2008.03.009

[17]

Choi B K, Jeong M K, Kwon H I. Compact current modeling of fully depleted double-gate MOSFETs with doped short-channel[J]. Jpn J Appl Phys, 2008, 47: 8253. doi: 10.1143/JJAP.47.8253

[18]

Sallese J M, Chevillon N, Prégaldiny F. The equivalent-thickness concept for doped symmetric DG MOSFETs[J]. IEEE Trans Electron Devices, 2010, 57: 2917. doi: 10.1109/TED.2010.2071090

[19]

Dasgupta A, Lahiri S K. A two-dimensional analytical model of threshold voltages of short-channel MOSFETs with Gaussian-doped channels[J]. IEEE Trans Electron Devices, 1988, 35: 390. doi: 10.1109/16.2468

[20]

Dubey S, Tiwari P K, Jit S. A two-dimensional model for the surface potential and subthreshold current of doped double-gate (DG) MOSFETs with a vertical Gaussian-like doping profile[J]. J Nanoelectron Optoelectron, 2010, 5: 332. doi: 10.1166/jno.2010.1119

[21]

Dubey S, Tiwari P K, Jit S. A two-dimensional model for the subthreshold swing of short-channel double-gate metal-oxide-semiconductor field-effect transistors with a vertical Gaussian-like doping profile[J]. J App Phys, 2011, 109: 054508. doi: 10.1063/1.3552309

[22]

ATLAS manual: SILVACO Int. Santa Clara, 2008

[23]

Taur Y, Ning T H. Fundamentals of modern VLSI devices. Cambridge:Cambridge University Press, 1998

[24]

Hou D Q, Xia Z L, Du G. Computational investigation of velocity overshoot effects in double gate MOSFETs[J]. Proc IEEE, 2004: 1015.

[25]

Arora N D, Hauser J R, Roulston D J. Electron and hole mobilities in silicon as a function of concentration and temperature[J]. IEEE Trans Electron Devices, 1982, 29: 292. doi: 10.1109/T-ED.1982.20698

[26]

Kranti A, Haldar S, Gupta R S. An accurate 2D analytical model for short channel thin film fully depleted cylindrical/surrounding gate (CGT/SGT) MOSFET[J]. Microelectron J, 2001, 32: 305. doi: 10.1016/S0026-2692(01)00008-8

[27]

Rajendran K, Samudra G S. Modelling of transconductance-to-current ratio (gm/ID) analysis on double-gate SOI MOSFETs[J]. Semicond Sci Technol, 2000, 15: 139. doi: 10.1088/0268-1242/15/2/311

[28]

Jankovic N D, Armstrong G A. Comparative analysis of the DC performance of DG MOSFETs on highly-doped and near-intrinsic silicon layers[J]. J Microelectron, 2004, 35: 647. doi: 10.1016/j.mejo.2004.04.007

[29]

Trivedi V P, Armstrong G A. Quantum-mechanical effects on the threshold voltage of undoped double-gate MOSFET[J]. IEEE Electron Device Lett, 2005, 26: 579. doi: 10.1109/LED.2005.852741

[30]

Chiang M H, Lin C N, Lin G S. Threshold voltage sensitivity to doping density in extremely scaled MOSFETs[J]. Semicond Sci Technol, 2006, 21: 190. doi: 10.1088/0268-1242/21/2/017

[1]

Mao Xiaojian, Yang Huazhong, Wang Hui. Bias Current Compensation Method with 41.4% Standard Deviation Reduction to MOSFET Transconductance in CMOS Circuits. J. Semicond., 2006, 27(5): 783.

[2]

Xiaoyu Ma, Wanling Deng, Junkai Huang. Explicit solution of channel potential and drain current model in symmetric double-gate polysilicon TFTs. J. Semicond., 2014, 35(3): 032002. doi: 10.1088/1674-4926/35/3/032002

[3]

Bo Mei, Jinshun Bi, Jianhui Bu, Zhengsheng Han. Transconductance bimodal effect of PDSOI submicron H-gate MOSFETs. J. Semicond., 2013, 34(1): 014004. doi: 10.1088/1674-4926/34/1/014004

[4]

Jian Qin, Ruohe Yao. Modeling of current-voltage characteristics for dual-gate amorphous silicon thin-film transistors considering deep Gaussian density-of-state distribution. J. Semicond., 2015, 36(12): 124005. doi: 10.1088/1674-4926/36/12/124005

[5]

F. Djeffal, A. Ferdi, M. Chahdi. A fuzzy-logic-based approach to accurate modeling of a double gate MOSFETfor nanoelectronic circuit design. J. Semicond., 2012, 33(9): 094001. doi: 10.1088/1674-4926/33/9/094001

[6]

Huifang Xu, Yuehua Dai, Ning Li, Jianbin Xu. A 2-D semi-analytical model of double-gate tunnel field-effect transistor. J. Semicond., 2015, 36(5): 054002. doi: 10.1088/1674-4926/36/5/054002

[7]

C. Usha, P. Vimala. A compact two-dimensional analytical model of the electrical characteristics of a triple-material double-gate tunneling FET structure. J. Semicond., 2019, 40(12): 122901. doi: 10.1088/1674-4926/40/12/122901

[8]

Ashwani K. Rana, Narottam Chand, Vinod Kapoor. Gate current modeling and optimal design of nanoscale non-overlapped gate to source/drain MOSFET. J. Semicond., 2011, 32(7): 074001. doi: 10.1088/1674-4926/32/7/074001

[9]

Charu Rana, Dinesh Prasad, Neelofar Afzal. Low voltage floating gate MOSFET based current differencing transconductance amplifier and its applications. J. Semicond., 2018, 39(9): 094002. doi: 10.1088/1674-4926/39/9/094002

[10]

Xu Bojuan, Du Gang, Xia Zhiliang, Zeng Lang, Han Ruqi, Liu Xiaoyan. Threshold Voltage Model of a Double-Gate MOSFET with Schottky Source and Drain. J. Semicond., 2007, 28(8): 1179.

[11]

S. Derrouiche, B. Bouazza, C. Sayah. Modulation of drain current as a function of energies substrate for InP HEMT devices. J. Semicond., 2018, 39(11): 114002. doi: 10.1088/1674-4926/39/11/114002

[12]

Luan Suzhen, Liu Hongxia, Jia Renxu, Cai Naiqiong, Wang Jin, Kuang Qianwei. An Analytical Model of Drain Current for Ultra-Thin Body and Double-Gate Schottky Source/Drain MOSFETs Accounting for Quantum Effects. J. Semicond., 2008, 29(5): 869.

[13]

Manoj Kumar, Yogesh Pratap, Subhasis Haldar, Mridula Gupta, R. S. Gupta. Cylindrical gate all around Schottky barrier MOSFET with insulated shallow extensions at source/drain for removal of ambipolarity: a novel approach. J. Semicond., 2017, 38(12): 124002. doi: 10.1088/1674-4926/38/12/124002

[14]

Xiaorong Luo, Tian Liao, Jie Wei, Jian Fang, Fei Yang, Bo Zhang. A novel 4H-SiC trench MOSFET with double shielding structures and ultralow gate-drain charge. J. Semicond., 2019, 40(5): 052803. doi: 10.1088/1674-4926/40/5/052803

[15]

Li Xiyue, Deng Wanling, Huang Junkai. A physical surface-potential-based drain current model for polysilicon thin-film transistors. J. Semicond., 2012, 33(3): 034005. doi: 10.1088/1674-4926/33/3/034005

[16]

Mini Bhartia, Arun Kumar Chatterjee. Modeling the drain current and its equation parameters for lightly doped symmetrical double-gate MOSFETs. J. Semicond., 2015, 36(4): 044003. doi: 10.1088/1674-4926/36/4/044003

[17]

He Hongyu, Zheng Xueren. Analytical drain current model for amorphous IGZO thin-film transistors in above-threshold regime. J. Semicond., 2011, 32(7): 074004. doi: 10.1088/1674-4926/32/7/074004

[18]

Rajiv Sharma, Sujata Pandey, Shail Bala Jain. Analytical modeling of drain current and RF performance for double-gate fully depleted nanoscale SOI MOSFETs. J. Semicond., 2012, 33(2): 024001. doi: 10.1088/1674-4926/33/2/024001

[19]

Arash Rezapour, Pegah Rezapour. The effect of random dopant fluctuation on threshold voltage and drain current variation in junctionless nanotransistors. J. Semicond., 2015, 36(9): 093002. doi: 10.1088/1674-4926/36/9/093002

[20]

Liu Jian, Li Chenzhan, Wei Ke, He Zhijing, Liu Guoguo, Zheng Yingkui, Liu Xinyu, Wu Dexin. Development of High Performance AlGaN/GaN HEMTswith Low Ohmic Contact. J. Semicond., 2006, 27(S1): 262.

Search

Advanced Search >>

GET CITATION

S Dubey, K Tiwari, S Jit. On-current modeling of short-channel double-gate (DG) MOSFETs with a vertical Gaussian-like doping profile[J]. J. Semicond., 2013, 34(5): 054001. doi: 10.1088/1674-4926/34/5/054001.

Export: BibTex EndNote

Article Metrics

Article views: 1145 Times PDF downloads: 7 Times Cited by: 0 Times

History

Manuscript received: 04 October 2012 Manuscript revised: 14 November 2012 Online: Published: 01 May 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误